ANL-6697

Argonne National Laboratorn

A PRIMER ON THE ACT-III COMPILER
FOR THE
LGP-30 DIGITAL COMPUTER

by

| H. C. Thacher, Jr. and R. E. Grench

LEGAL NOTICE

This report was prepared as an account of Government sponsored
work. Neither the United States, nor the Commission, nor any
person acting on behalf of the Commission:

A. Makes any warranty or representation, expressed or implied,
with respect to the accuracy, completeness, or usefulness
of the information contained in this report, or that the use
of any information, apparatus, method, or process disclosed
in this report may not infringe privately owned rights; or

B. Assumes any liabilities with respect to the use of, or for
damages resulting from the use of any information, apparatus,
method, or process disclosed in this report.

As used in the above, "person acting on behalf of the Commission”
includes any employee or contractor of the Commission, or employee
of such contractor, to the extent that such employee or contractor
of the Commission, or employee of such contractor prepares, dis-—
seminates, or provides access to, any information pursuant to his
employment or contract with the Commission, or his employment with
such contractor.

;-
g
b

ANL-6697
Mathematics and
Computers
(TID-4500, 24th Ed.)
AEC Research and
Development Report

ARGONNE NATIONAL LABORATORY
9700 South Cass Avenue
Argonne, Illinois 60440

A PRIMER ON THE ACT-III COMPILER
FOR THE
LGP-30 DIGITAL COMPUTER

by
H. C. Thacher,Jr. and R. E. Grench

Reactor Physics Division

October 1963

Operated by The University of Chicago
under
Contract W-31-109-eng-38
with the
U. S. Atomic Energy Commission

IT.

III.

TeVE>

AL

VII.

TABLE OF CONTENTS

XSHRIGEL @ T @ INERR e J e e
INIUIVIEITIRIES 50 o i S s i o 0 o Bl o BEC i
AT IntE ger s e SRR e e s
1. Integer Program Constants .. .
2. Integer Problem Parameters . .
12)0 - UsEEil INNTRARUSIEIRR) o & o b g o o e o B
1. Real Program Constants
2. Real Problem Parameters. . . .
SIME [HE SV ARITAB LR SR T s s e oo
THE ASSIGNMENT OPERATOR

ARITHMETIC OPERATIONS WITH REAL NUMBERS

AN RundamentalS@peratiomsi st i, il s s e e S0 e 6o
B W Precedencelofi@penations ettt i i e
G Speciali@perationsi gl it ai cERl s ST i L e
BB o c ke sl Sl ot oo o o B s o o AR
SHEANE VIR N TRSEANBDE PR ©E RIAIVISEE. Siets it s R L S oo
Il GHERIZIEaEHaET), o 0 6 0 OOk ok B O B OO i B G 60 1y S oo
BAStatermentilabel's BT R LT e o e T RS
(©r IBAEGYEaizhanioio o o oo oG O G S R DS SR SRS DS SRS i o g
EERNENEARYEINPURSANDSOUT PUIE- I Ste o i e
A T T R R R e o e o e S e R T
I GE o e r i R R ok e SO e .
G AREAINIEREsITIVE 5 5 G O i O DR B A L RO CA O .
125 (01T bRE E s kS S A) D A o D OO R R e
Ly 8 Iotersaa iy JBNHTEENE o 56 o min Guo o e R TR
2. Real/Floating—point (BB oG e o g e et it i
3. Fixed-point Output of Floating-point Numbers.
2y lenisgE QORGS0 0lo 0 o 0 0 ok DlE O D s O R
BRI R C LI G pe ramaieas s s o8 o e o ek e e e
G NG ATt riace Returns and Tabulates . . v cie scis o v =

Page

15

15
16
157
18

20

20
2l
21

23

23

23
23

24

24
24
25
25
26
26

O S ¢ e RPRIRSY
K adNr 500

: busasyl) 1y S
;ﬁ &,4:.;'1 ! g8

VIII.

IX.

TABLE OF CONTENTS

ELEMENTARY CONTROL OPERATIONS . . - - ¢ v ¢ v oo o oo
S S linconditional A sfe r sl TR e
B = Conditional Transfer s ot utn ol
S PependinglonBalstER esul LR Stk S i e
2. Depending on the Sign of an Expression
G T ransferstfrom Data Input et ol st o
MiscellaneousiContreoli@perations . - . it T T
R SO D T s e O B S s d etk LR ST R
2B reakpoimiiiumps i S
BN G verfllowESlcl Pl st L e B S SR T
ESSENTIALS OF A DEFINITIVE PROGRAM-
AT Name/sto G ar i bl e st o R o S o s RSPt I
BERS Remarltsfont Prop ranmmedia pe s Re Rt e es I S0 i e o e
C S RemarkeiontBatar Bapestiy i utimy i o Ll L TR
DR Smple P roblernsiie ;8 it dr sl i i halint e il T RS
EEOMPUREREG EERIAVIC) N e e s R St ar i (s Rr e i Sy e
A E e Dricat 10 aNo R o b ra nnilia o e s s Se el O e
BT -anslation Se s e T e e o e L e R T
CENR e compilationmPse Sl Sttt s Sl L RTINS R
DS PuschoutRofEOh e ctiiPro orarm -t et i
e Riinmag Sthel Pro g am S s e e e
S Chrecikinsithe N Erop o "Rl Es Gl oo 8 Sl SO e e
LSS Errer Indications at Run Timel . Tl i e,
ZesmlIsesofinterrediatcl@Uiput S s = il e i s
s bSlate e nteStoppinge SRR S e s
A At e et e e s A T e s L Mt R

28
28

28
29

31
32

B2
55
34

35

36
36
i
3

38
38
39
41
41
42
42

43
43
43
44

TABLE OF CONTENTS

Page

XI. USE OF LIBRARY PROCEDURES AND SUBROUTINES i
A. . General Call for Procedures & Sttt sh sy 2 45

B. Speecial €alls for Procedures & et . 45

1.. Functions of One Variable i o 45

2. -Eunctionsiag Parammeter il Gl 5 on Nt s o i 46

C. .- Translation of Procedures dih=t. =i it i e e 46

RIS ARTTHMETIC OPERATIONS WITH INTEGERS: - 47
AACEIiBasicainteper GOpenalions £ . R S = S 47

Bt iSpecial Operationsg o o . o e o o e s oerrd S R R e 48

C. Conversion between Integer and Floating-point Numbers . 48

D ¥Scaling. Floating-point Numbers i S u i e 49
XNENSUBSECRTPTED VARIABLES . s=5it .5t Gt e il S et 50
AT D imensiontStaternent s e N 50

B Sin pl el U b s C DS N 50

G cIncremented Indexes . o o .0 O RSERT R S st b2

B o Double. SUbscriptsl. - . > ool st sl ok e i Fs RSN 52

Ve TEER ATTONS Lo e e e e L 54
SVE A DVANCEDICONTRO IO PERAFTENS I 56
A RecallinpialSubrontine SN S S i U, 57

B iSettingiSwitehe sisi ol u il L e et R S 57

C- N IndexediSwitche s i SRS B et o R 58

DN Callinp BB racedin e s St S R 59

SOVAL AT S, (ONBIFIRIOE LONEB IINAREAE o & 0 0 o e g o s o 59
5 Eroprdrnnn ed lphabie il cREmypit e e 60

B. Alphabetic Output and Input of Coded Information 60

= e

XVII. WRITING NEW PROCEDURES

Mmooy

XVIII. MACHINE OPERATIONS
XIX. CONCLUSION

TABLE OF CONTENTS

Repeated Alphabetic Output
Caompatible Gutput SR
He=zide cimalf@utput ands [nput s S
Rieadian diFoa t i s e e

BasiclREeqnITemnent sl e e o

ReferencestofArgumentss . E S

Temporary Exits from a Procedure

Global Variables

GheclimofProceditre s G as i @i i

APPENDICES
G rrorstatl € ompile=Timel s iy sl i i R
B B nroreta tiRun=siirme sl Lo e S oGS i i R S
EEACTE I @perator st it oRi e s i R o
DS SurnmaryioffOpemations v o . v o s ol LR
BESAGCT-TIE@ peratorsrandtDecimal N ermor vy in G
B Codes for Mlaread !B o e L
G 8 Solutions to:EXeRCISEeS. « - o o oo o ph el e e e ae e e

61
61
61
61

62

62
63
63
65
66

67
68

69
70
7l
s
76
79
80

il

2

b

Flexowriter Keyboard

LIST OF FIGURES
Title

Computer i ContrEals Pameli i i S S S

Photoreader and High-

speedf BunchfGont ol iEaneilu e s

A PRIMER ON THE ACT-III COMPILER FOR
THE LGP-30 DIGITAL COMPUTER

by

H. C. Thacher, Jr. and R. E. Grench

I. INTRODUCTION

Automatic digital computers offer a means of relieving scientists
and engineers of much tedious calculation. Our largest engineering and
scientific projects depend upon automatic computers to process and eval-
uate theoretical or experimental data. Any complicated calculation which
must be repeated a dozen or more, or even fewer, times is a worthwhile
application for the computer. This is particularly true if the computer is
readily accessible without excessive administrative details.

The many ways of using a computer vary in scope and speed. For
small problems in particular, it is desirable to lay as much of the burden
as possible upon the computer. The difficulty arises in communicating
with a programming specialist. The vernacular of the scientist or engi-
neer must be programmed for translation to the language obeyed by the
computer. The translation is accomplished by a special program called
a compiler. In most cases, therefore, the scales weigh heavily in favor
of the scientist or engineer writing his own program.

The purpose of these general notes is to give an introduction to the
writing of programs for the ACT-III compiler for the General Precision
LGP-30 Computer, and to the procedures for translating and solving prob-
lems with them. This compiler was developed by Dr. Henry J. Bowlden of
Union Carbide, Cleveland, Ohio. More detailed specifics of the language
and of the mode of action of the compiler are available in the manuals for
ACT-III, which he prepared. These manuals are distributed through POOL,
the LGP-30 Users Organization.

The reader must acquaint himself with the larger portion of this
primer to write his own programs. Sections XI, XV, XVI, XVII, and XVIII
can be left for reading last, as they contain more advanced programming
or are not necessary for the writing of simple programs. The authors
strongly recommend an initial scanning of the whole primer and then ad-
ditional work on the basic portions and example problems.

II. NUMBERS

Operation of the LGP-30 computer is typical of modern, high-speed,
digital computing equipment: calculations are performed primarily by com-
bining a series of numbers through various arithmetic operations. Ordinar-
ily, we are not concerned about the way numbers are handled inside the
computer, but we must know how to get them in and how they appear when
printed out.

Therefore, we begin by discussing the way in which numbers are
written for the ACT-III compiler. First, we must distinguish between two
kinds of numbers: integers, and real or floating-point numbers. These are
represented differently in the program, are combined by different opera-
tions, and are often used for different purposes. Secondly, numbers which
enter a program can be of two classes: (1) program constants, which will
be the same each time the program is used; and (2) problem parameters,
which may vary from case to case.

The programmer can prescribe a variety of formats for output,
which will be described at a later stage.

A. Integers

Integers are used primarily for counting, but they are also valuable
in other applications. ACT-III allows the use of positive and negative inte-
gers between -536,870,911 and +536,870,911. However, a special multipli-

cation operation must be used if the product exceeds 134,217,727 in
magnitude.

1. Integer Program Constants

Integer program constants are restricted to positive values.
They can be entered in either of two forms:

(1) Up to five digits, followed by a stopcode ('); for example,
1238 WO U] 28 4508

(2) A plus (+) sign, followed by one to four digits, a stopcode,

and zero to five digits, and another stopcode; for example,
EI 23451 VECRI P 3450/ S i K23

2. Integer Problem Parameters

Integers which are problem parameters, or data, may be of

either sign, but are limited to a maximum of seven digits. The format

consists of a sign and one to seven digits, followed by a stopcode; for
example,

+1234567', -14', +0000563".

If tabs or other characters are used to separate data, the full sign and
7-digit representation must be used.

B. Real Numbers

Most calculation is done with real, or floating-point numbers.* In
ACT-III, real numbers consist of a signed fraction, with magnitude between
0.1 and 1.0, and slightly less than eight decimal-place accuracy, and an ex-
ponent between -32 and 31. The value of the number is the product of the
fraction and ten to the value of the exponent. In addition, zero can represent
either a real number or an integer. Floating-point arithmetic relieves the
programmer from estimating the magnitudes of intermediate results, which
is otherwise necessary to avoid exceeding the capacity of the machine. It
is, however, slower and less accurate.

1. Real Program Constants

Real program constants are limited to positive values. They
consist of the following components which must be specified in the sequence
cited:

1) decimal point;
one to four digits (the first digit cannot be zero);

stopcode;

stopcode;
exponent e (or e- if the exponent is negative);

absolute value of the exponent as a 1- or 2-digit number;

(
(
(
(
(
(
(
(

)
2)
3)
4) zero to five digits;
5)
6)
7)
8)

final stopcode.

*We will use the terms "real" and "floating-point" interchangeably. The
term '"real," as used in the international algorithmic language Algol,
describes a number which can take on any positive or negative value,
or zero. The term "floating-point" describes a particular way (in
ACT-III, it is the usual way) of representing a real number in the com-
puter. The floating-point representation is closely related to ordinary
scientific notation whereby very large and very small numbers are
represented with a scaling factor of a power of 10.

10

Thus, as a real program constant,
100,000.7 = 0.1000007 x 10°
would be expressed in the form
.1000'007'e'6".
Similarly, the constant
0.00105 = 0.105 x 1072
would take the form
21105 e =7

When used for program constants, the floating-point zero and
the fixed-point zero are both represented by zero.

Despite the apparent ability to specify up to nine significant
digits in the ACT-III compiler, only the first eight digits are used in the
computer.

2. Real Problem Parameters

Real problem parameters, or data, are specified and arranged
in the following sequence:

1) plus or minus sign;

(
(one to seven digits (the first digit cannot be zero);
(stopcode;

plus or minus sign (for the exponent);

(
(

one or two digits (the exponent);

)
2)
5)
(4)
5i)
6) final stopcode.

Thus, as a real problem parameter
100,000.7

would be expressed in the form

+1000007'+6'.

Similarly, the parameter

-0.00105
would take the form
= 10524
and zero could be written as
$3{0430)
EXERCISES
1. Express the following integers as integer program constants and

as integer problem parameters. If it is impossible to do so, indicate why.

2)l e.) -536,870,911
bE)32 14566 @
@) 2B g.) +742,125,000
Slo)) A5G TSI Ik J ARl AL
2. Express the following integer program constants as integer

problem parameters and as integers. If it is impossible to do so, or if the
"program constant" is incorrect, indicate why.

a.) +0' e e

B -1 4]0 ozt

c.) +1234" g.) +7000'00000"'
d.) +1'23456' h.) -700'0000"

3. Express the following numbers as floating-point program con-
stants and as floating-point problem parameters. If it is impossible to do so,
indicate why, and, if possible, give the nearest approximation.

20 e.) 3.14159265
5]+ G Tl Bodl s RS

c.) 6.02 x 10% g.) -0.195 x 10732
d.) -3.00 x 10 b)) @HP8 s S

4. Express the following floating-point program constants as
numbers and as floating-point problem parameters. If it is impossible to
do so, or if the "program constant" is incorrect, indicate why.

1L

a.) .512'34678'e'5' e.) +.512"'5'
b.) .5"e-'32' f.) .512"e'-5'
co)is . Tlel3 2] g.) .512'e-'5'
d.) -.4"e'0! h.) .51234'2678'e'0’

5. Express the following floating-point problem parameters as
floating-point program constants and as numbers. If it is impossible to
do so for certain cases, or if the "problem parameter" is incorrect,

indicate why.

a.) +0'+0' e.) +1230000'+7'
b.) -1234567'89'e'-5" f.) +0000123'+7'
et =l g) 12345680 LB
diz)ie 123456 7!)R- 12345 6/ =3 &

III. SIMPLE VARIABLES

In most calculations, the same set of operations is performed with
several different sets of numbers. These numbers are substituted for single
letters which denote the variables in the basic formula or series of formulas
being computed.

In similar fashion, ACT-III allows variables which will be given
values either by reading in problem parameters or by calculations performed
during the program. However, instead of restricting the names of variables
to single letters, ACT-III will accept any combinations of up to five letters,
or letters followed by digits or other symbols, and ending with a stopcode.
The program does not distinguish between upper and lower case letters;
hence, A' and a' would represent the same identifier.

Certain words and combinations of letters, digits, and/or symbols
are excluded from use as names of variables, since they represent specific
operations in the ACT-III vocabulary (see Appendix C). For example, com-
binations of one to five digits, or a plus sign (+) followed by one to four
digits, are interpreted as program constants. The letter x is reserved to
denote multiply. Other combinations beginning with the letter s and followed
by one to four digits are reserved for labeling statements.

In identifying variables, it is essential that the names be as descrip-
tive as possible to help in understanding the program. The following are ex-

amples of acceptable names for simple variables:

eksiexRdelta 0Nt =1t {har] L Vi

13

EXERCISE 6

Which of the following represent acceptable names for simple varia-
bles? Why are the others unacceptable?

a.) templ' f.) sine'

b.) temporary' Sl e

c.) x' i) @t (e m2h)
d.) root' i.) s092'

e.) sin' j.) +123!

IV. THE ASSIGNMENT OPERATOR

One of the most common types of calculation consists of evaluating
a series of formulas and substituting the results of the evaluations into other
formulas to calculate the desired quantity. For example, the density of a
substance d may be expressed by the formula:

Density d = mass/volume . (1)
The volume of a sphere is given by

Volume = 4 x 3.141592 x (radius)’/3 . (2)
The radius, in turn, is given by

Radius = diameter/Z . (3)

We can calculate the density of a material from the mass of a sphere of
given diameter by using Eq. (3) to find the radius; by substituting the radius
in Eq. (2) to find the volume; and, finally, by substituting the volume in

Eq. (1)

Similar calculations may be specified in ACT-III, although the nota-
tion is slightly different. Instead of writing the quantity to be determined at
the beginning of the formula, we write it at the end; and instead of interpos-
ing an equality symbol, we use the assignment operator :'.
may be read as "yields," or "replaces," and is really a more exact expres-
sion of what we wish to do than is the equality relation. For example, we

may write

This operator

Vit delt iyt

14

indicating that we wish to replace y with y + delta. On the other hand, if
we were to write

y tdelta = y -
we have an impossible equation, except for delta equals zero.

The assignment operator :' assigns the value of the quantity on the
left to the variable on the right. When a new value is assigned to the vari-
able, the previous value is lost. Obviously, the right operand of the assign-
ment operator must be a single variable and not, as for most other operators,

a more complex expression.

Assignment operators can be used in succession to assign the same
value to several variables. For example, the sequence

.llle|ll:lalzlb|:lcll
will give the floating-point value 1.0 to each of the three variables a, b, and c.

It is not permissible to use an expression ending with an assignment
operator and variable as the left operand for any other operator; for example,

dme'l':'a'+'b': e,

The desired result of assigning 1 to a and (a + b) to ¢ may be produced by
writing

.1l|e|l|:lal|
and
a|+lbl:lcll.
A more efficient program would result from replacing the last line with
prev|+lb|:lcl!’
where the special operand prev' denotes the result of whatever operation
was last executed. When used in this manner, prev' should be the first
operand encountered in the statement.

EXERCISE 7

What would be the values of a, b, and c after the following sequence
of assignments?

OV:IaII

g eyt
2lstc
a'i'templ"
hilialt
clibl
templislc!!

Elementary and tedious as this exercise may seem, it does illustrate
an excellent way of understanding a complicated program.

V. ARITHMETIC OPERATIONS WITH REAL NUMBERS

ACT-III provides the usual arithmetic operators for addition, sub-
traction, multiplication, and division of constants and variables, as well as
several more complicated types of combinations, such as exponentiation and
the common elementary functions. These operations are provided both for
real (floating-point) operands and for integers. Since the real operands are
more useful, we will discuss them first.

A. Fundamental Operations

The basic operations of arithmetic combine two quantities which are
identified as right and left operands, since they appear to the right and left
of the operation symbol. For example, in the algebraic expression (a +b),
a is the left operand, b is the right operand, and +t is the operation symbol.

ACT-III provides for addition, subtraction, multiplication, and
division of floating-point operands. Each of these operations is represented
by a distinct operator symbol followed by a stopcode:

Addition frL

Subtraction -

Multiplication x'

Division !
Thus the ACT-III expression
al+|bl

produces the same result as (a + b) in ordinary algebra.

16

There is one important distinction between ACT-III and traditional
algebraic notations for multiplication of factors. In algebra, the factors are
displayed in juxtaposition, and the multiplication symbol is omitted; for ex-
ample, ab denotes the product of a and b.

By contrast, the multiplication operator must be interposed between
the factors to be multiplied in an ACT-III expression. Juxtaposition of

factors has a different meaning (see Section XIII: Subscripted Variables).

B Erecedencelofi@®penrdlions

In writing ACT-III expressions, certain rules and conventions must
be observed. They are designed to avoid ambiguity with respect to the com-
bining of terms and/or the sequence in which operations are to be performed.

Simple algebraic sums pose no problem. For example, the ACT -III
counterpart of the algebraic sum

as=bi=¥cd
would be expressed and evaluated as

a'+'b'-'c'+'d’.
However, when addition and subtraction are combined with multiplication
and division, the order in which the operations are performed becomes im-
portant. In algebra, this is taken care of by the general convention that,
unless otherwise indicated by brackets or parentheses, all multiplications
and divisions are performed before additions and subtractions. Accord-
ingly, the expression

G o3 o) i@ e Gl
is evaluated as

(axb)+ (c xd).

In ACT-III, the desired sequence of operations is assured by assign-
ing a precedence number to each operator symbol, as follows:

Operator Symbol Precedence No.
Multiplication %! 2
Division /! 2
Addition 18 1
Subtraction =t i
Assignment o 0

(see Appendix C for listing of all precedence numbers). In evaluating an
expression, operations of highest precedence are performed first, then
those of next highest precedence, and so on. If two operations of equal
precedence are side by side, the one on the left is performed first. This
may be important since in computing with a limited number of significant
figures,

(a +b) +c
is not necessarily equal to

a+(b+c).
Another example is the expression

ax b/c xod
In conventional algebra, this might be interpreted either as

(axbx d)/c
or as

(a x b)/(c x d).

In ACT-III, the "equal precedence" rule would prevail, and the latter in-
terpretation would be evaluated as

alx|bl/lclx|dl‘

C. Special Operations

Among the less-common operations, the ACT-III library provides
for exponentiation, sign change, square root, natural logarithm, common
logarithm, exponential, sine, cosine, arctangent, and absolute value. Each
operation is denoted as follows:

157

Operation Operator
Exponentiation pwr'
Sign change 0-'
Square root sqrt'
Natural logarithm 1541
Common logarithm log'
Exponential exp'
Sine sin'
Cosine cos'
Arctangent artan'
Absolute value abs

18

The operator randm' produces a pseudo-random floating-point number be-
tween 0 and 1. All of these operations are of precedence 3, i.e., they are
performed before multiplications or divisions.

The exponentiation operator pwr' has both a left and a right operand.
For example, the expression

a'pwr'b'

produces the quantity ab, where both a and b are floating-point constants
or variables.

The other operators listed act on a single quantity, i.e., the variable
or constant immediately following. Since the operator -' denotes subtrac-
tion, it cannot be used to calculate the negative value of a quantity. Instead,
we must use the operator 0-', or the equivalent, but somewhat slower op-
erator 0'-'. To calculate the expression

a+.\/b_

we write
s tihe

Obviously, the operators sqrt', In', and log' can be applied only to positive
operands. The angles for sin' and cos', and the result for artan' are ex-
pressed in radians.

D. Brackets

Parentheses, brackets, and braces are used in algebra to enclose
groups of terms whose result is to be treated as a single-number expression.

The same technique is employed in ACT-III; however, only a single
form of bracket pair, i.e., [']', is used to delimit the desired groupings. A
group of constants, variables, and operators enclosed in a pair of these
brackets is treated as a single operand for any immediately preceding or
following operator. Thus the largest root of the quadratic equation

ax®> + bx + c =0

would be expressed

[lo_lbv+lsqrtl[lblxlbl_l’4llelllxlalxlcl]l]l/l[l‘Zvlelllxlal]l g

This expression is also illustrative of the following observations
on the necessity of using brackets for grouping terms, and/Or alternate
methods of achieving the same results. First, all sets of brackets are
considered necessary in the mode of expression cited. The outer pair
(left of the solidus) is required to specify that

-b + +/b% - 4 ac

is the numerator. If they were omitted, only the square root would be
divided by 2a. The inner pair of brackets delimits the discriminant of
the square root operator. If they were omitted, the numerator would be
interpreted as

(-b +b¥2 - 4 ac).

The brackets to the right of the solidus define the denominator. If they
were omitted, the root would be

(-b + +vb%-4ac)xa/2.

The brackets in the denominator could be eliminated and essentially
the same results could be obtained by writing

[IOI_lbl+|sqrt|[|b|xlb|_l.4llelllealxlcl]l]l/|.2llell|/lal.
This would be evaluated as

([(-b + v/b?-4ac)]/2)/a.

A second observation, with respect to the basic illustration, is
that bracketed expressions may occur inside other brackets. In ACT-III,
up to seven sets of brackets may occur in a nest. This is sufficient to
meet almost all needs. If more brackets are required, they can be written
to some level less than seven along with instructions to assign the result
to some temporary variable. Thus

a'/'['b'+'['c'x‘[‘d'+'e']']']‘:'r"

with a bracket depth of three, might be replaced by
dl+7el:ltemp1 n
templixc titempl "

templ'+'b':'templ"

a'/'templ':'r"

with no brackets at all. The reader may adjudge one pair of brackets in
this example as unnecessary. The inclusion of unnecessary bracket pairs

20

will have no effect on the operation of the program, and the cautious pro
grammer will insert brackets wherever there is any possibility of ambiguity.

Every complete expression should have an equal number of opening
and closing brackets. This is a common type of error and is c}?ecked by the
translator program. A simple manual check consists of assigning num‘t?ers
(from 1 to 7), in ascending and descending order, respectively, to open%ng
and closing brackets as they are encountered in an expression. Accordingly,
the final closing bracket should have the number 0. To illustrate, the follow-
ing expression has been checked by this method:

1 2 3 2 5 210

o_l[la|+lsqrtl[lblpwrl[lclxldl]‘+'exp'['a'/’c']']‘]'.

EXERCISE 8

T a.= 0.1 % 10° b =02 x 10° c = 0.8 x:10% and d = 0.4 =N
give the values of the following expressions:

a.) a'+'b'x'c’
b.) a'/'b'+'c'x'd'
<) a'x'b'/‘c'x'd'

d.) al/lbl/lcl

e') al_lblxldl/lcl

VI. STATEMENTS AND PROGRAMS
A. Statements

We are now ready to consider the basic segment of an ACT-III pro-
gram: the statement. A statement may contain up to 63 words. (A word is
a variable, a constant, an operation, or a statement number.) Every state-
ment is terminated by a second stopcode. It is unusual, however, and
inadvisable to write the full length of a statement, since in checking the pro-
gram, only results of complete statements are accessible. Therefore, the
difficulty of locating an error in a faulty statement increases rapidly with
its size.

In most cases, the grammar of the ACT-III language brings a logical
end to a statement long before the maximum length is reached. Certain op-
erations such as the assignment operator, the output operators, and a few
others, do not have any result, in the sense of a numerical answer which can

be used as a left operand for another operator. Two successive variables,
or a variable and a constant, have a special meaning (see Section XIII: Sub-
scripted Variables). Thus it is not possible to follow an operator which
does not have an answer by any operator which requires a left operand.
Ordinarily, therefore, every sequence of assignment operators with right
operands ends a statement.

B. Statement Labels

Statements may be labeled with statement numbers. Although
liberal use of statement numbers is good practice, it is not necessary to
label every statement. When statement labels are used, however, the label
must be the first word of the statement. It consists of the letter s followed
by an integer between one and 192, and a stopcode. Statement numbers may
be assigned in any order; for example,

gl
s105'

s003' (equivalent to s3').

Statement labels are useful in several respects. First, they assist
in effecting program checkouts. The statement-by-statement print-out of
calculated results (trace) includes statement numbers of all labeled state-
ments. This helps the programmer to locate himself in the print-out.
Furthermore, stop orders may be compiled so that the number of the state-
ment appears in the oscilloscope. This is convenient in determining the
reasons for stops.

Second, statement numbers may be used to re-enter a program
after an interruption. The translator for ACT-III produces, among other
outputs, a list of the locations of the first instruction of every numbered
statement. In the case a calculation is interrupted, either because of ma-
chine malfunction or because of work of higher priority, the operator may
easily start at any numbered statement. Since output and input devices are
particularly prone to failure, it is good practice to label all input and out-
put statements, or at least the first of each group.

Finally, statement numbers may be used to direct abnormal
changes, jumps, or alterations in the normal flow of calculation from the
end of one statement to the beginning of another. Usage of statement
numbers for these purposes will be discussed in a later section.

C. Programs

A program is a series of statements which directs the carrying out
of the entire calculation in the desired manner. The end of a program is

21

22

indicated by an additional stopcode, following the stopcode which end.s the
last statement. When this stopcode is recognized by the translator, it
signals that the translation is completed. The translator proceeds to 0\'1tput
information on actual locations for the programmer and then stops. It is
not possible to continue translation following the end of a program, although
the translator may be reset to translate an entirely new program.

EXERCISE 9

Write ACT-III statements assigning each of the following values to
the variable res':

a.) ([(-0.25 z + 0.33333333)z - 0.5] z + 1)z.
This is the fastest and most convenient way of evaluating the polynomial
-z%/4 + 23/3 - 22/2 + 2,

which is approximately equal to ln (1 + z) when z is not too large or too
near -1.

b.) The following continued fraction is a somewhat better approxi-
mation to In(l + z):

z

14z

2 4R

3 +0.20000000 z

c.) z /0.1111111 + 1.8888889

(z +2.4313725 - 0.48058439
z +1.5686275)

d.) 0.11111111 z + 1.8888889 - 4.5925926

z +2.6290323 - _0.27098508
z + 137096/

The expressions in b.), c.), and d.) are algebraically equivalent.
Compare them with respect to speed and accuracy of computation.

EXERCISE 10

Write statements for converting between the rectangular represen-
tation of a complex number:

23

Bli=x iy
and the polar representation:
z = pei¢ .

and back. Assume x > 0. Write expressions for the real and imaginary
parts of the sum, difference, product, and quotient of two complex numbers.
Choose names for your variables which assist in understanding your
notation.

VII. ELEMENTARY INPUT AND OUTPUT

To be of any value, a program must be able to accept problem param-
eter data and to communicate the results. ACT-III provides a considerable
variety of operations for this purpose. The most frequently used operations
will be described in this section. A few specialized input and output opera-
tions will be discussed in Section XVI,

A. Input
1. Integers

The input format for integer problem parameters was described
in Section II. Briefly, they are represented as a sign, either + or -, followed
by up to seven digits and a stopcode. The instruction iread' with a right
operand causes a number in integer format to be read by the reader and
assigned to the right operand. Thus with +15' in the reader, the statement

iread'n"
would cause n to take the integer value +15.

2. Real Numbers

It will be recalled from Section II that the problem parameter

for real or floating-point numbers consists of two sections. The first sec-
tion consists of a sign, followed by from one to seven digits and a stopcode.
The second section includes an integer between -32 and +31, and another
stopcode. The instruction read' with a right operand causes a number to be
read in floating-point format and assigned to the right operand. Thus, with
15't3' in the reader, the statement:

read'eks"

would cause the variable eks' to be given the value +0.5 x 10°.

B. Output

Output operations are a little more complicated, since it i.s de‘si.rable
to specify both the number and the arrangement, or format, in w}?lch it }s to
be printed. The print instructions discussed in this section require an 'mte-
ger as aleft operand, to specify the format, and a right operand to specify the
number to be printed.

1. Format Integer

The format integer is the same for the three output operations
described in this section. It specifies first, the total width of the column
in which the number is to be printed (including leading spaces), and, sec-
ondly, the number of digits to be printed after the decimal point. If w is
the width of the column, and d is the number of digits to be printed after
the decimal point, the format number is

f =100w +d

For example, the format number 2008 will cause a number with eight digits
after the decimal place to be printed in a column twenty spaces wide.

2 Real/Floating-point Qutput

The standard output operation for a floating-point number is
printd.
The statement
Elprintial

causes the floating-point number a to be printed as a fraction and expo-
nent. If the format number is f, the program prints leading spaces as
needed, then a space (if the number is positive or minus sign if negative),
decimal point, the fractional part of a, space, e (or e- if the exponent is
negative) and a 2-digit exponent.

The sign, decimal point, and exponent require seven spaces;
therefore w must be at least seven before any digits of the fraction can
be printed. If w is less than seven, only the exponent will be printed it
w is greater than seven, but w - d is not, the number of fraction digits
printed will be reduced. Since the number of significant digits carried by
ACT-III floating-point arithmetic system is between seven and eight, the
value of d should not exceed eight digits. The format number 1608 will
give all the information in a minimum space.

3. Fixed-point Output of Floating-point Numbers

Although the standard floating-point output is the most generally
useful, there are occasions where an unscaled output with a fixed number of
decimals is convenient. The operator

dprt'
fulfills this need. The statement

f'dprt'a"
causes the floating-point number a to be printed as an ordinary decimal
number, with d (from the format number) digits after the decimal point.
If the number is too large to be printed in the space allowed, the number
of decimal places is reduced. Otherwise the number is printed in floating-
point format, and the last decimal place printed is rounded.

4. Integer Output

Numbers stored as integers may be printed by the operation

iprt!.
The statement

Rlprtli
will cause the signed integer i to be printed. The format number f is in-
terpreted as follows: the number of hundreds gives the width of the field
in spaces, as for print' and dprt'. However, if the width allowed is insuf-
ficient, the entire integer is printed anyway. A decimal point is inserted
arbitrarily d digits from the right of the integer, unless d is zero. The

use of a d greater than eight digits gives meaningless results.

To illustrate these operations, the following outputs for a would
be obtained from the statements cited as columnar heads:

a 1606'print'a" 1606'dprt'a"
1.234567 N2 34 5ies Ol 1.234567
-0.001234567 -.123457e-02 -0.001235

With a = 1234567, the statement

1606'iprt'a"

25

26

would produce

-1.234567.

5. Right Operand

Clearly, the right operand of an input operator must be a single

variable; it would be meaningless to assign the value read from tape to, say,
['a'+'b']'. The right operands of output operators, however, may be as com-
plex an expression as desired, provided that the whole expression is enclosed
in brackets. Thus, the statement

1608'print‘['['0'-'b'+'sqrt‘['b'x'b'—'.4"e'l'x'a'x‘c']‘]'/'['.Z"e‘l'x'a']']"
would compute and print the larger root of the quadratic equation

ay? +by +c = 0

6. Carriage Returns and Tabulates

Two additional operators are provided to assist in controlling
the format of the computer output. The operator cr' effects a carriage re-
turn and advances the paper one line. The operator tab' moves the carriage
to the next tab stop specified.

In typing the program tape, it is convenient to know that carriage
returns are ignored by the translator. On the normal Flexowriter, tabs are
treated as a blank character. On the 4-mode Flexowriter, they are ignored.
Thus, carriage returns always can be used to improve readability, and tabs
to separate comments. Tabs may also be used to set off data tapes only if
the number following comprises a sign and seven digits. Other uses of the
tab are to be avoided if the normal Flexowriter is used. In both Flexo-

writers, spaces are always treated as characters; all other control keys
are ignored.

Liberal use of carriage returns and tabs is suggested for they
greatly improve the printout for reading, duplicating, and report writing
purposes.

EXERCISE 11

What output would be produced by the following program:

cr'iread'n"
read'b"

nHpriint

n'print'b"

nldprilb™

with each of the following sets of input:

a.) +0'+1234567'-5"'

b.) +1605'+1234567'-5'

c.) +802'+1234567'-5"

d.) +802'+1234567'+0"

e.) +200'+1234567'+0"

f.) +202'-1234567'+5"
D)

g +1608'+1234567'+5"

28

VIII. ELEMENTARY CONTROL OPERATIONS

In most programs, the control of computer operations is inflexible:

statements are executed successively in the order in which they are
written. This section describes the methods that can be employed in
ACT-III to provide a versatile program. More specifically, the operators
which can effect unconditional or conditional transfers, or other digres-
sions, form the basic order of operations.

A. Unconditional Transfers

The operator use', followed by a statement number, causes the
statement labeled with that number to be executed. For example, in the

case of the quadratic equation
2 =
ay“+by+c =0

the equation solver can be made to compute the roots of any number of
equations by writing
s5' cr'read'a
read'b"
read'c"
1608'print'['['sqrt'['b'x'b'-‘.4"e'1'x'a'x'c']‘—‘b']'/‘['.Z"e‘l‘x'a']"
use's5".
This program will read a set of values for a, b, and c, print the larger

root of the equation, and return for another set of parameter values.

B. Conditional Transfers

The program which we have just written will work provided that,
in all cases, a 7! 0 and that b?*> 4ac. If a = 0, the computer would be
instructed to divide a number by zero and would stop. If b? - 4ac was
negative, the equation has a pair of complex roots.

1. Depending on Last Result

There are two operators which change the flow of a program
under certain conditions. The operator trn', followed by a statement
number, causes the numbered statement to be taken next if, and only if,
the result of the last operator is negative. If it is positive or zero, the
following statement is executed. Thus to continue our quadratic equation
example, we might revise the program as follows:

29

s5' erireadial
read'b"
meadiclt
bixibli=tvaletlixlalxcitVdiscr!
trn's6"
cr'1608'print'['['sqrt'discr'—'b']'/‘['.2"e'1'x'a']']"
cr'1608'print'['0'-'sqrt'discr'-'b']'/'['.Z”e'l'x’a']’]"
use's5"

s6' cr'1608'print'['['0'-'b']'/'['.Z"e'l'x'a’]’ I
1608'print'['sqrt'[0'-'discr']'/'['.2"e'l'x'a']']
uselsHil

This program will print real roots on separate lines. If a root is com-

plex, it will print the real part, followed by the complex part on the same
lines

2. Depending on the Sign of an Expression

Provision can be made for three possibilities that the coeffi-
cient a vanishes by including an if' statement. The if' statement con-
sists of the operator if' followed by a variable or an expression in
brackets. This, in turn, is followed by neg' and a statement number;
zero' and a second statement number; and pos' and a third statement num-
IE One, two, or all three possibilities mgbe included; however, in the
latter case, they must be written in the order given.

Accordingly, the if' statement transfers control to the state-
ment whose number follows neg' (if the expression is negative), or to the
statement whose number follows zero' (if the expression is zero), or to
the statement whose number follows pos' (if the expression is positive).
If none of these conditions is met, the program continues on to the next
statement. Thus, we may write

sl' if' ['y'-'2z']'neg's10'pos's20"
s2' if'w'neg's30'zero's40"

s3! if'y'pos's50"

s4' v Eam = hwl bty

Under these conditions the statements will be executed in the following

sequence:

30

Statement s10', if y< z
Statement s20', if z<y
Statement s30', if y = z, and w<0.

Ify = zand w = 0, statement s40' will be executed next. Statement s50'
will be executed next only if y = z, w >0, and y >0.

The program for solving quadratic equations can be improved
further by including an if' statement to test for the vanishing to the
coefficient a.

s5! cr'read'a"
read'b"
readic!
if'a'zero's7"
.2"e'l'x'a':'denom"
bixibl- 4telxlalx!cl:Idiscrt
trn's6"
sqrt'discr':'discr"
cr'1608’print'['['discr'-'b']'/‘denom']"
cr'1608'print'['['O'-'discr'-’b']'/‘denom']“
e sb!
s6' sqrt'['0'-'discr!]':'discr"
cr'1608‘print'[‘['O-'b']‘/‘denom']"
1608'print'['discr'/'denom']"
uselsbll
s er 1608 print [-'c‘]'/'b']"
use's5"'.
In addition to providing for the possibility that a = 0, this

program has been improved with respect to the denominator. In the
original version, the denominator

Zlellixial

would be computed each time it appeared in a print statement, or twice
for each pass through the program. By adding the extra statement

31

.2"e'l'x'a':'"denom"
we merely have to save and recall the denominator whenever it is needed.
The ACT-III translator produces a program which follows
instructions exactly. If shortcuts are to be introduced, the programmer
must supply them. This is not a defect, since on many occasions, what

appears to be a logical shortcut may be completely wrong.

C. Transfers from Data Input

There are many times when we want to read in a series of
numbers, but do not know, in advance, how many there will be. The input
routines for ACT-III are arranged so that when a data word is read, either
by an iread' or a read' operation, and has no sign or digits (for example,
a blank word), the program transfers to a numbered statement which has
been set earlier in the program.

The instruction which effects this transfer is the operator rdxit'.
p ALl
To be effective, it must be executed by the program before the input in-

V3 prog p
struction. Then the transfer will be to the last statement prefixed with the
operator rdxit'. For example, the following program is written to read a
set of floating-point data from tape and to compute the mean and standard
deviation:

s100' rdxit's50"
0'!'1’1”
prev':'sum"
prev':'sumsq"
815 read'data"
prev'+'sum':'sum"
data'x'data'+'sumsq':'sumsq"
.11|e|1l+lnl:|n||
use's75"
s50' cr'sum'/‘n‘:'sum"
sumsq'/’n':'sumsq"
1608'print'sum"
1608'print'['sqrt'['sumsq'-'sum'x'sum']"]"

use's100™

52

This routine uses the mathematical identity

OZZ(X'E)Z: 2‘(’_‘)2 ’

where the bar denotes averaging. Observe that we must keep track of the
number of data, their sum, and the sum of their squares.

The program down to statement s75' is executed once for each set
of data. It is, however, a necessary section of the program, since it
initializes the calculation. If the rdxit' operator was not set, the program
would transfer to whatever place the last user of the machine had desig-
nated, with possibly mystifying results. Similarly, if the variables n',
sum', and sumsq' were not set to zero, they would very probably have
unexpected values. Initialization of his program is an important respon-
sibility of each programmer.

Also, it may be observed that after all the data have been read
and the divisions performed, there is no reason to keep the sums. The
same variables are, therefore, used to keep the mean values.

Upon entering this program at statement s100', the program first
initializes the rdxit' and the variables, and then proceeds to statement s75',
where it calls for data in floating-point format. It adds the data read in to
sum', and its square to sumsq', adds one to the count of data which have
been processed, and returns for more data. This continues until the end
of the list of values. After the last value, an extra stopcode causes the
program to proceed to statement s50', and compute and print the average
and the standard deviation. The program then returns to try another case.

D. Miscellaneous Control Operations

e & Sireyel

It is frequently convenient to cause the computer to stop,
either because some emergency has arisen in the program or because
some phase of the calculation has been completed. The operator stop'
will bring this about. The next statement can be executed by pressing the
START button on either the computer or the Flexowriter.

If the stop statement is numbered and if the statement was not
translated for tracing, the statement number will be shown in binary in the
instruction register of the computer oscilloscope. This may be useful for
determining which of several possible stops has been reached. Rather
than worry about reading hexadecimal, it is convenient to use the state-
ment numbers sl' to produce a single step; s5' to produce two steps;

315}

s21' to produce three steps; and s85' to give four steps. Other numbers
can be substituted for these to give equivalently easily recognized patterns.

The stop operation is often useful in data input. Suppose that
one section of data is expected to be the same for a large number of runs
of the problem. To avoid reproducing these data it would be desirable to
be able to use the same tape for these data and merely to vary the second
section. It is unsafe to attempt to change tapes when the computer is
calling for input. A better solution is, after the orders calling for each
section of input, to insert a stop, to allow for changing to the next tape of
input data.

2. Breakpoint Jumps

Occasionally it is convenient for the operator to be able to
direct the course of the program. On computers equipped with an over-
flow logic board, this can be accomplished through the operators bkp4',
bkp8', bkpl6', and bkp32'. Breakpoint 32 is ordinarily reserved for
print delays and should not be used. When one of these operators is en-
countered, the program either proceeds to the next instruction, if the
corresponding button on the console is down, or skips to the instruction
following, if the button is up. Thus, the instructions

bkp8'use's2"
stop"

52! read'a"

would cause the program to stop before reading a, if the breakpoint stop 8
button was up; if it was down, the program would bypass the stop.

On computers with a standard logic board, the breakpoint
statement is ignored if the button is down; if it is up, the computer stops.
A START COMPUTE will transfer to the next statement. If a transfer is
desired to the indicated statement, the following buttons must be pushed:
ONE OPERATION; MANUAL; START COMPUTE; ONE OPERATION;
NORMAL; START COMPUTE.

The ability of the operator to make decisions and changes
while the program is running is often convenient. It is wise to use this
ability cautiously. There is no record on the output of the computer in
which position the breakpoint buttons were set. Since this output is the
principal record of the calculation, it is dangerous to use the breakpoints
to make changes which will not be clearly reflected by the results. A
very useful, and safe, use of the breakpoints is to provide for optional
printing of intermediate results, which may be desirable if a calculation
does not turn out as expected. A dangerous use of the technique is for

34

selecting one of two methods of computing. It is too easy to neglect to
note the position of the breakpoint, so that at a later time it is not possible
to tell which calculation was performed. A more satisfactory way of di-
recting the computer to choose one of two or three alternate paths is by
inputting a dummy parameter, which is then examined by the program to
determine the course of action.

For example, suppose that at some stage of the program we
would like to be able to select either Course a' (starting at s100'),
Course b' (starting at s125'), Course c' (starting at s150'), or to continue
as before. The following program will provide this capability.

sl' bkp4'use's10"
s65' stop"
ireadial

s10' if'a'neg's100'zero's125"

Then, if breakpoint 4 is up, the program will stop and call for input when-
ever it comes to statement sl'. The inputs listed below will cause the
corresponding Courses to be followed by the program:

Input Course Selected
=1 Course a'
+0' Course b'
SR Course c'

If the program is to continue as before, breakpoint 4 is in the down posi-
tion, causing the input call to be skipped the next time through.

3. Overflow Skip

In floating-point operations, overflow is unlikely. If a result
with exponent greater than 32 is generated, an error indication is printed,
and the computer stops. The same thing happens if capacity is exceeded
by the ix' or i/' operators.

Overflow can occur in integer addition and subtraction, and
in the machine language operations add', subtr', and div'. Computers
with the standard logic board stop when this happens. Computers with
the overflow logic board continue, but an internal indicator (the sign bit
of the command register) is set. The indicator may be tested, and turned
off if it is on, by the operator oflow'. This operator causes the following

35

%nstruction to be skipped if overflow has not occurred, and to be executed
if overflow has taken place since the last execution of this operator. For
example, the statement

oflow'use's!'7"

R o

will cause s7' to be executed in case of overflow, and s5' otherwise.
EXERCISE 12

Write a program to compute and print a table of secants and cose-
cants of angles expressed in degrees. The table should be arranged as
follows:

Numbers of degrees Secant Cosecant
Include a blank line before every fifth degree (e.g., before 0° 5° 10° .. .).

EXERCISE 13

We may approximate the definite integral

f: f(x)dx

by the sum
(b-a)/n[(1/2)f(a) + fla+ (b-a)/n]+f[a+2(b-a)/n] + . ..
+ flat(n-1)(b-a)/n]+(1/2)f(b)]

where n is an integer greater than zero. The approximation becomes bet-
ter the larger the value of n. Write a program for integrating a function.
Assume that there is a section at s100' which assigns the value of f(y) to
the variable f, starting with a particular value assigned to the variable y.
After computing f, the program is to return to the statement after the
statement use's100". Allow a, b, and n to be inserted as problem
parameters.

IX. ESSENTIALS OF A DEFINITIVE PROGRAM

During the course of writing a program, the connotations of the
words, abbreviations, or acronyms selected for the operators and the
variables may appear perfectly obvious to the author. A few months later,
however, they may appear perfectly obscure to the author or, possibly,

36

to another user of the same program. For this reason, it is essential that
the author provide an adequate explanation of any program in which a sig-
nificant amount of effort has been expended.

A. Names of Variables

The ability to use any combination of up to five characters eases
the task of selecting definitive names for variables. The inclusion of a
directory is recommended in cases for which it is necessary to abbrevi-
ate or to substitute characters which are not available on the Flexowriter
keyboard.

B. Remarks on Program Tapes

It is most convenient to have this directory, as well as other
types of explanatory information, included as a part of the program and
not filed separately. The ACT-III language provides a means for incor-
porating such information directly in the program, from which it is im-
mediately available. No operator or variable name in ACT-III can contain
more than five letters or other characters. Strings of characters of more
than five letters are interpreted as follows: if the sixth character preced-
ing the stopcode is one of the sixteen letters, tidybrazenchumps, the entire
string of characters is ignored. If the sixth character is any other charac-
ter, the string is treated as a blank word. Thus, for example, if we head
our program by

Computation of the Zilch Function. John F. Smith Author',

the sixth character before the stopcode is the letter 2a; therefore the entire
section is ignored. On the other hand, in the program section

sl! if'discr'neg's5' negative discriminant means complex
roots',

the sixth character before the stopcode is a space; therefore, the stopcode
is recognized. It is interpreted as the normal end-of-statement signal.

If a second stopcode had followed s5', the comment would have been inter-
preted as a third stopcode, i.e., the end of the program.

In the first example, the word "Author," although superfluous,
served to exclude the program heading from recognition during program
translation. Other words may be employed for the same purpose; for
example, ending descriptions with the word "Remarks." The words
"Program'" and "Procedure" are also useful.

The extent to which documentation should be carried out will vary
with the contents and objectives of each program. In general, the governing

37

criteria should favor too much, rather than too little, exposition. As a
minimum, each program tape should include:

Title of program;

)
) Author's name;
). Date:

)

Input required (identification of each quantity, and whether
integer or floating-point, in the order it is called for by
the program);

(5) Output produced (identification of each quantity);
(6) Breakpoint options;
(7) Procedures used, with dates. (A copy of the procedures

may well be included.)

In addition, it is usually helpful to include a brief description of how the
calculation is done, as well as any limitations on the applicability of the
program.

Remarks should be inserted in the program itself whenever there is
any possibility that another reader might benefit from an explanation of

either the need for a particular step or what it accomplishes.

C. Remarks on Data Tapes

It is also good practice to identify and explain data tapes. In read-
ing either floating-point or fixed-point problem parameters, only the last
eight characters (including spaces and, except on the 4-mode Flexowriter,
tabs) before the stopcode are examined. If the full eight characters are
used by the data (the first of these must be a sign), any desired remark
may be prefixed. For example, the following are equivalent:

integer i +0000050' +50'

floating-point Em +1500000'+1' +15 11!

Data tapes should have the user's name, the program with which
they are to be used, the date, and some form of identification. Identifica-

tion of input data is often helpful.

D. Sample Problems

Another very useful item in program documentation is a sample
set of input data, labeled with their significance. Such a sample problem
not only illustrates the use of the program, but also gives a convenient check
that the program has been properly translated and is functioning in the de-
sired manner.

38

X. COMPUTER OPERATION

We have now mastered enough of the ACT-III language so that we
can write programs to carry out many tedious calculations. It is appro-
priate, before we continue our study of the language, to describe how to
make the computer obey our instructions.

A. Preparation of Program Tapes

The first step is to convert the handwritten instructions to a form
which can be read by the computer. The LGP-30 computer accepts input
from the attached typewriter (Flexowriter), or from paper tapes by the
reader of the Flexowriter or of the Photoelectric Reader. When tapes
are read by the Flexowriter, a copy of the input is produced by the type-
writer. Ordinarily, it is faster and more accurate to use tape for all
input.

Tapes are prepared by typing the desired information on the Flexo-
writer (see Fig. 1). Either the Flexowriter attached to the computer or a
spare may be used. When the PUNCH lever is down, every time a key is
pushed, a corresponding row of up to six holes is punched in the tape.
MANUAL INPUT LIGHT

cOND [sTaRT[stop [PuncH :/ TAPE | CODE MANUAL] START
READ | READ | ON FEED INPUT [COMPUTE|

STOP

Dhanhaaneadd=aesE

DNENDNENEDREE B

efojojofulololiofuioial: RN

ENENEON D000 @D
| s]

Fig. 1. Flexowriter Keyboard

When the TAPE FEED lever is pressed, the punch feeds blank tape
until the lever is released. Every tape should begin with a leader of
10-20 in. of blank tape. This allows space for identifying the tape and
facilitates loading the tape in the Photoelectric Reader. Leaders of blank
tape are also convenient for separating sections of program or data.

Corrections can be made by either of two methods, depending upon
the nature of the errors and the promptness with which they are detected.
It is, of course, impossible to erase a set of holes in the tape. However,

g9

both readers will ignore any line wherein all six holes are punched. Thus,
if detected immediately, an extraneous or an erroneous character may be
precluded from translation by simply punching six holes in that particular
line. This is accomplished by rolling the tape back one space, and depress-
ing the CODE DELETE lever on the Flexowriter. The same procedure can
be followed if several words have been typed incorrectly, provided the
errors are detected promptly.

For more serious errors, or those discovered too late, it is more
convenient to utilize the ability of the Flexowriter to copy tapes. The pro-
cedure is as follows:

(1)

Insert the incorrect tape into the reader. Depress the PUNCH
and START READ levers. The Flexowriter will then read the
tape, and type and punch it, until it comes to a stopcode. When
it reaches a stopcode, the reader will print and punch it, and
stop.

Depress START READ lever to continue on to the next
stopcode.

If it is desired to continue through stopcodes, without stopping,
depress the COND STOP lever. Upon nearing the place where
corrections are to be made, raise the COND STOP lever, and
the reader will stop at the next stopcode. It is also possible to
stop the reader by depressing the STOP READ lever.

Type in the correction(s). Then, either roll the incorrect tape
forward, or raise the PUNCH lever and allow the reader to
read through the incorrect portion of the tape depressing it
again when you wish to copy.

B. Translation

After the program tape has been punched and proofread, it must be
translated. The procedure is as follows:

(1)

Turn on the computer, the Flexowriter, and the Photoreader
(see Figs. 2 and 3). Depress the MANUAL INPUT lever on
the Flexowriter. Press the READER STOP button on the
Photoreader. Place the ACT-IIIA(S) tape in the Photoreader
with the printed side down. Turn the INPUT SELECTOR
switch on the Photoreader to READER.

When the warmup cycle of the computer is complete (the
oscilloscope shows a pattern), press the ONE OPERATION
button, the CLEAR COUNTER button, the NORMAL OPERA-
TION button, and the START button.

40

stoP || comPUTE]

STAND
oNE || mavuaL | | stanD || poerare || SHANS
e OPERATIO'_II INPUT BY ERATE
CLEAR FiLL || execute || Power || power
STARY [coumsn iNST || INST oN { OFF
! - ROYAL PRECISION
BREAK || BREAK |[BREAK Mmoo
POINT l POINT [;)INT ramd || e] [l
32 16 8 4
Fig. 2. Computer Control Panel
TYPE. READ|TYPE. PUNCH)
X7 L3I
TAPE PUNCH TAPE PUNCH READER | | | READER
AND READER FEED POWER STOP POWER
INPUT OUTPUT
ROYAL PRECISION LGP-30
L SYSTEM

Fig. 3. Photoreader and High-speed Punch Control Panel

(NOTE: Owing to the frequency with which this sequence of operations is
performed, it will hereafter be abbreviated to: OCNS.)

All other buttons except OPERATE should be up.

(3)

The photoreader will now begin to read the translator tape.
While it is being read, the program tape may be placed (with
the printed side up) in the reader on the Flexowriter. After
the ACT-IIIA(S) tape has been read, the T-tape is placed in

the photoreader. (NOTE: In the current edition of the complete
compiler, the T-tape is marked T-5.) The ACT-IIIA(S) tape is
rewound, and the START button is pressed. After a short in-
terval of computing, the T-tape is read and the computer stops.

Turn the INPUT SELECTOR switch to TYPEWRITER. Depress
the 6-BIT button. If a trace is desired, depress the TRANSFER
CONTROL button. DO NOT OCNS. Raise the MANUAL INPUT
lever. Depress the START button on the computer or, on the
Flexowriter, press the START COMPUTE lever.

The program tape will now be read and translated, and the trans-
lated program stored in the computer starting at location 0300.

The translator program includes tests for certain common errors
in the program, i.e., incorrect operators, unmatched brackets, or exceed-
ing the storage capacity. (A more comprehensive list of errors, as well
as the remedy for each, is included in Appendix A.) Whenever an error is
detected, the typewriter will print a notification, and the computer will
stop. For example, if the program and the data exceed available storage,
the Flexowriter will carriage return and print s000 0000. In this case,
the program will have to be rewritten. If a statement number is referred
to in the program, but is never used as a label, so that it is not defined,
the Flexowriter will execute a carriage return and print the undefined
statement number. It will also print the location of the machine instruc-
tion referring to that statement. This will be repeated for each place
where an undefined statement number is used.

When these error indications have been given, or if no errors
have been given, the Flexowriter will execute a carriage return, print f,
and the machine location of the last instruction of the program. It will
then print each statement number used, and the machine address of the
first instruction in this statement and, finally, the various variables used,
with their machine addresses.

C. Recompilation

Although it is possible to correct errors in the course of the
translation phase, it is better practice to correct the program tape and
recompile. In recompiling, or in compiling a second program after a
first program has been translated and output, it is not necessary to re-
load the whole translator and T-tape. Instead, a short tape labeled with
T* and the same number as the T-tape being used may be loaded. This
resets the program to begin a new translation. Before attempting to load

the T*-tape, raise the 6-BIT button, and the TRANSFER CONTROL button.

After it is reloaded, return to Step (4) as described above.

D. Punchout of Object Program

After completing the translation successfully, it is advisable to
punch out the translated program. To do this, raise the 6-BIT and the
TRANSFER CONTROL buttons, turn on the photoreader, turn the INPUT
SELECTOR switch to READER, then press the READER STOP button.
Place the ACT-III(B) tape in the reader and OCNS. When the tape has
been read completely, turn on the PUNCH on the Flexowriter, feed tape
to give an adequate leader, type an identification of the program, and
press the START COMPUTE lever on the Flexowriter. The entire pro-
gram will be punched and printed by the Flexowriter in a form which is
not easily readable by the programmer, but is easily reloaded into the

computer.

41

42

The number of tape-loading operations can be minimized by pre-
paring a single tape which comprises the ACT-IIIA(S), the T-4B, and the
ACT-IIIB and C tapes. In this event, the program punch-out procedure is
as follows. After translation is completed, depress the MANUAL INPUT
lever on the Flexowriter, raise the 6-BIT and the TRANSFER CONTROL
buttons, and OCNS. The light on the Flexowriter will illuminate. Type
in doat2900', and press the START COMPUTE lever. When the computer
stops, turn on the PUNCH, type the program identification, and press the
START COMPUTE lever on the Flexowriter.

E. Running the Program

To run the program, a set of routines to carry out the various
operations must be loaded. These routines are contained in a large tape
labeled P-4B or P-5B. To load them, turn on the photoreader, raise the
6-BIT and TRANSFER CONTROL buttons and all BREAKPOINTS, and
press the READER STOP button. Then place the P-tape in the reader,
turn the INPUT SELECTOR switch to READER, and OCNS. If the trans-
lated program is still in the memory when the reader stops, turn the
INPUT SELECTOR switch to TYPEWRITER, place the data tape in the
typewriter reader, depress the MANUAL INPUT lever on the typewriter,
and OCNS. When the typewriter light illuminates, type in doat0300', press
the START COMPUTE lever twice, and raise the MANUAL INPUT lever.
The program will now be executed.

If it is desired to start the program at some other numbered
statement, this can be done by finding the true address TTSS (4 digits)
from the statement directory printed after translation. Depress the
MANUAL INPUT lever, and OCNS. When the light comes on, type
doatTTSS' and press the START COMPUTE lever.

If it is necessary to reload the translated program, place it in the
photoreader after the P-tape has been read, and press the START button.
Then continue by turning the INPUT SELECTOR switch to TYPEWRITER,
and so on. However, in this case, OCNS and doat0300' are not necessary
after the program is read in.

F. Checking the Program

The complete checking of a program is difficult and a task requir-
ing skill. The degree of checking will vary with the importance and com-
plexity of the program, and the patience and ingenuity of the programmer.
Ideally, every alternative path through the program should be tested to
verify that it produces correct results. This can often be done by running
the program on several sets of input data with known results.

1. Error Indications at Run Time

Theoretically, a carefully checked program should run with-
out interruption and should produce the desired results. This is rarely
the case. To the contrary, past experience has shown that many errors
in computer fundamentals may be detected painfully rapidly. The major-
ity of these errors can be related to inadvertent instructions to perform
illegal operations. For example, dividing by zero, or computing the
logarithm or the square root of a negative number.

Whenever an illegal operation is detected, the typewriter will
immediately execute a carriage return and type the letter e, followed by
a number, and the operator symbol in question. It will then perform a
second carriage return and type the number of the last labeled statement
executed, the location of the erroneous instruction, and the right operand
of the operator. The latter will be interpreted as an integer and as a
floating-point number. The types of errors associated with the various
operators and the corresponding remedial actions are described in
Appendix B.

Even if no illegal operations are detected, the program may
still fail to produce the correct result. This, too, indicates an error which

must be located and corrected.

2. Use of Intermediate Output

In locating errors, it is often possible to get an idea of what
may be wrong by studying the output. If the breakpoint options have been
used ingeniously to provide extra output of intermediate values, they may
be helpful in finding where the program started to go wrong, and what sec-
tions are apparently correct. If this device and a careful study of the
original program are unsuccessful, tracing may be employed.

3. Statement Stopping

It will be recalled that in translating the program, the TRANS-
FER CONTROL button determined whether the program was to be trace-
compiled or not. At run-time when the TRANSFER CONTROL button is
up, a trace-compiled program runs the same way as one which is not
trace-compiled. If the TRANSFER CONTROL button is down when enter-
ing the program, an opportunity is offered for instructing the program to
stop at a selected statement number. The operating procedure is as
follows: Immediately after entering the program, with the MANUAL IN-
PUT lever down on the Flexowriter and the TRANSFER CONTROL button
down, the computer will stop with the Flexowriter light lit. If a + followed
by a statement number (without the s) is typed in, the TRANSFER CON-
TROL button is raised, and the START COMPUTE lever is pressed, the

43

44

program will run at full speed and stop just before executing the state-
ment specified. Pressing the START COMPUTE lever with the MANUAL
INPUT lever down will call for a new statement number. To run without
stopping, type in "run." This feature of the ACT-III subroutine system is
useful if it is known that the program is all right as far as a certain state-
ment and that only the section after this statement requires examination.

45 T racing

Tracing is a time-consuming task. Moreover, it produces an
inordinate amount of output, only a small amount of which is significant.
However, tracing does allow the programmer to follow in detail the course
of the calculation, to verify each step by hand calculation, and thus to lo-
cate his errors.

If the program has been trace-compiled and the TRANSFER
CONTROL button is depressed after entering the program, the following
print-out will occur for each statement:

Carriage return
Statement number (000, if statement is unnumbered)
Machine address of the first instruction of the statement

Result of statement (interpreted as an integer and as a
floating-point number).

XI. USE OF LIBRARY PROCEDURES AND SUBROUTINES

Procedures and subroutines are blocks of programming which are
used repeatedly to perform complicated sets of operations, for example,
to evaluate a complex function, to compute the root of an equation, or to
invert a matrix at several places in a program. These operations are
not provided for directly in the ACT-III language; however, a mechanism
is provided whereby procedures from other sources may be incorporated
in a particular program. The programmers at most LGP-30 installations
maintain a library of procedures for calculations common to their respec-
tive organizations, and a number of multiple-use procedures are available
through POOL. (The justification of such a library at each LGP-30 instal-
lation cannot be overemphasized.)

This section will discuss the method of using procedures which
are available. (The rules for writing new procedures are discussed in
Section XVII.)

A procedure obtained from a library will, ordinarily, contain
special instructions for its use. Among others, these instructions may

45

include call statements to be written in the main program; what the argu-
ments stand for, whether they are integers, floating-point numbers, or
sets of numbers; and nature of the results. The discussion here is not
intended to supersede these special instructions, but to give a more gen-
eral description of procedures and their uses.

Multiple-use sections of programming may be classified by the
nature of the information which they take in and the information which
they produce. The simplest type, for example, is a routine to compute the
hyperbolic tangent of y; the input required is limited to the value of y. A
more complicated procedure might take a block of data, or several blocks,
and produce one or more blocks of data, for example, a procedure which
computes the sum of two matrices. Another class of procedures requires
a function for one or more inputs. The output might be a single number, or
one or more blocks of numbers. Examples are procedures to find a root of
an arbitrary function, to integrate a function, or to solve a set of differential
equations.

A. General Call for Procedures

In the ACT-III language, the general call for a procedure consists
of a statement, for example,

call'beer'arg'blatz'arg'slitz'arg'bud",

where beer' is the name of the procedure; blatz', slitz', and bud' are the
arguments, which may be single numbers or arrays. One or more of the
arguments may be assigned for output or may be changed to a new form

by the procedure. The meaning of the arguments and the order in which
they are listed will be specified in the description of the procedure.

B. Special Calls for Procedures

1. Functions of One Variable

For procedures in which a single number is required or which
produce a single number, a special call can be used to accelerate the com-
putation. This consists of calling the procedure without any arguments,
immediately after a statement which leaves the argument in the accumula-
tor. Any expression with a result or an assignment statement will accom-
plish this.

Subroutines which produce a single number may leave with
this number in the accumulator. To assign this result to a variable or to
use it in another way, the operator prev' may be used. For example, the
sequence of programming

46

y|+l zll
call'zilch"
prev'iiia!

will assign the value of the Zilch function of y + z to the variable u.

2. Functions as Parameters

When a procedure, such as an integration routine, requires a
function as input, it is ordinarily written to include a subroutine to cal-
culate the function, or to call for such a subroutine to calculate the func-
tion, or to call for such a subroutine immediately following the procedure
call. In order to return to the basic procedure, the initial calling sequence
must include a procedure-recall statement. The recall statement consists
of the procedure name and the suffix 2'; the arguments are omitted.

As an illustration, suppose we have a procedure (root) which
requires as input a tolerance (tol), an initial guess (y°) of the value of the
root, and a function (fct). The procedure is to return with the accumula-
tor containing the value of the function fct(y) for the value of y originally
in the accumulator. The calling sequence for this procedure might be

yol :lyll
call'root'arg'tol'arg'y"
calllfctlt

calliroat"2i:

C. Translation of Procedures

It is essential that a procedure be translated before any call of
that procedure. Failure to meet this requirement is not detected by the
translator and is the responsibility of the user. A safe rule is to trans-
late all procedures before the main program.

After loading the ACT-IIIA(S) tape and the T-tape, and changing to
typewriter input, 6-BIT mode, the first procedure tape is placed in the
Flexowriter reader; translated procedures obtained from a library are
generally provided on separate lengths of tape, the last operator of which
is wait'. When the tape reaches the wait' instruction, the translator stops
to allow the tape to be changed. Unless special steps are taken, proce-
dures are not traced, nor are their statement numbers and variables
printed in the directories produced at the end of translation.

A final note of caution regarding identification of library proce-
dures, particularly from installations where new procedures are under

47

development. In some instances, a procedure with a given name may

exist in several different versions which are not entirely equivalent.
Therefore, a program which uses library procedures should include copies
of all procedures which it requires or, at least, a reference to the specific
procedures that are used.

XII. ARITHMETIC OPERATIONS WITH INTEGERS

Although arithmetic operations are performed more frequently
with real numbers, the ACT-III language provides facilities for perform-
ing the corresponding operations with integers. We have already met
integers as program constants and as problem parameters, and have
learned how to read and write them. It is now appropriate to describe
the basic and the special integer operations that are available.

The primary application of integers is for such housekeeping
operations as counting, subscripts, and switching. However, their funda-
mental characteristic, that they are represented exactly in the computer,
without error due to roundoff, or conversion to binary fractions, means
that they can be used to avoid accumulating this error.

A. Basic Integer Operations

The basic integer operators are distinguished by the prefix let-
ter i, followed by the symbol used for the floating-point operator. Thus,

il odet dx', and i/'
are the operators for adding, subtracting, multiplying, and dividing integers.

In division, the statement

divd'i/ divr':'quot"
produces a quotient and a remainder of the same sign as the divisor. The
remainder is stored as a special variable, remdr'. It can be used later in
the program until it is replaced by the remainder from a subsequent divi-
sion operation.

For the multiplication of small integers (with product less than

134,217,727 in magnitude), a special operator nx' is provided. This is
faster than the operator ix' and does not require a special subroutine.

48

EXERCISE 14

Any common factor of two integers is also a factor of the remain-
der when the larger of the two is divided by the smaller. With this knowl-
edge, construct a program to print the greatest common denominator of
two integers input from the keyboard.

B. Special Operations

Two special integer operations are also available. The operator
iabs', with only a right operand, produces the integer which is the abso-
lute value of the integer right operand. The operator ipwr', with integer
right and left operands, produces the integer which is the left operand
raised to the right operand power. If the right operand is negative, left
operand zero gives an error stop; left operand one gives one; and left
operand greater than one gives zero.

EXERCISE 15

Write a program which will read a set of positive and negative
integers from the keyboard, and select the one which is largest in mag-
nitude and the one which is smallest in magnitude. Upon exiting from the
read phase, the program is to print max for the integer with largest mag-
nitude, min for the integer with smallest magnitude, and (max)™in,

C. Conversion between Integer and Floating-point Numbers

There are several operations which involve both integers and
floating-point numbers. Three operators are available to effect conver-
sions. The operator flo', with integer left and right operands, produces
a floating-point number which is equal to 0.1 raised to the left operand
power multiplied by the integer right operand. Thus,

O flollZ 3! would yield sl 23 %e Bk
Il flol1 235! would yield dl23lel2y
['0'i-'1']'flo'123!" would yield .123tel4!

Conversion of floating-point numbers to integers may be accom-
plished by either of two operators, unflo' or fix'. Both operators require
an integer left operand and a floating-point right operand. If the left
operand is denoted as n, it converts the right operand, multiplied by 107,
to an integer. In the case of unflo', the number to be converted to an
integer is rounded after scaling. In the case of fix', the next smaller
integer is taken (the next larger in magnitude, if the number is negative).
To illustrate, the following results would be obtained with the right
operands and operators indicated.

y 0' unflo'y!' Ot fiisev! 2" unflo'y'
15.734 16 15 165
1.826 2 il 183
2947.301 2947 2947 294730
=1.5275 -1 -2 -133
=1.5275 -2 -2 -153

EXERCISE 16
Give the results of
Uit flobyiEOE il v U8 hin fllof yl S8 L e Ly U I T il ol e (L S Ut

on each of the following numbers, carried in real (floating-point) form:

a.) 0.51635 e.) 51.6354

b.) 0.051635 f.) 51.0000

c.) 0.00051635 g.) -0.5163542 x 1073
d.) -51.6354 h.) 516,354,200.0

D. Scaling Floating-point Numbers

The final operation which has a fixed-point operand is the operator
x10p'. It consists of a floating-point left operand, a fixed-point right oper-
and, and produces a floating-point result. This operator multiplies the
left operand by the power of ten given by the right operand. It can be used
for scaling if numbers become larger in magnitude than 10*! or smaller
than 10~

EXERCISE 17
(A) Write a program using floating-point arithmetic to calculate
and print the floating-point representation of the numbers from 0 to 100.

Print the numbers with format number 1709', five numbers to the line.

(B) Write a second program to compute these numbers by integer
arithmetic and floating the integer just before printing.

If possible, translate and run both programs.

=0

50

XIII. SUBSCRIPTED VARIABLES

In many problems, we are interested, not in single numbers, but
in arrays or ordered groups of numbers. For example, a complex num-
ber is usually characterized by two real numbers, its real and its com-
plex parts; a vector in n-dimensional space may be characterized by its
n components; a polynomial of degree n in one variable may be specified
by its n + 1 coefficients; a system of m homogeneous linear equations
in n unknowns may be summarized by the m X n matrix of coefficients.
In all these cases, it would be more convenient to refer to the whole
array of numbers by a single name and to use some device to select indi-
vidual elements. ACT-III provides such a device: subscripted variables.

A. Dimension Statements

In handling an array, the translator must be informed how much
storage to set aside for the elements of the array. This is done by the
dimension statement, which has the form: sl_i_rn', followed by the names
and the maximum number of elements in the respective arrays. An exam-
ple of a dimension statement is

dim'polyl'25'poly2'10'mtrix'26".

Several arrays may be defined by a single dimension statement, and a
program may contain several dimension statements; however, each array
must be defined by a dimension statement before it is referred to. If an
array or index is given the same name as a previously named variable,
the previous definition is erased from the symbol directory. However,
all parts of the program which have already been translated will refer to
the old variable.

B. Single Subscripts

Elements of a one-dimensional array, such as a vector or the co-
efficients of a polynomial, are referred to by the array name, followed by
a stopcode. This, in turn, is followed by either a constant integer or a
non-negative integer variable, which is the subscript, or index. If the
subscript is a variable, a statement is required to the effect that it is
to be used as an index. This statement is of the form

andes=ltytiin

The first element of an array is referred to by the array name
and the index 0, the second by the array name with index 1, and so on.
Thus the expression a'0' refers to the first element of the array named a.
If the dimension of a is 26 or more, a'25' refers to the 26th element. The
elements of a are actually stored in reverse order. If the array a is stored

51

in locations 3000 to 3026, the element a'0' is in location 3026, and a'26' in
location 3000. If an index is used greater than the dimension of the array,
an element is selected from the next-named array or simple variable. On
the other hand, if a variable index has not been assigned a value before it
is used as a subscript, what Bowlden describes as "mysterious results"
may occur.

As an example of the use of subscripts, let us evaluate a polynomial
of degree n=50, the coefficients of which are to be read into the array poly.
The coefficient a'i' is the coefficient of y!. The following program will
accomplish this:

rdxit's7"
dim'poly'51"
index'j"

slll Ol:ljll

iread'n"

n'i+'1':'1im"

sl read'poly'j"

TebALE g
S if'['j'i-'lim']'neg's1"
Sl readiv!l

L el e

poly'j':'value"
SZI jVi_'lV:lj"
trmls 8l

value'x'y'+'poly'j':'value"

s5' use's2"
s3! cr'1608'print'value"
use'sll™

EXERCISE 18

Assume that array a, of n elements, contains the elements aj,
0=j=n-1, of an n-dimensional vector a; also that array b contains the cor-
responding elements of a vector b. Write a program to compute and print
the scalar product (sp) of a and b:

52

EXERCISE 19

Construct a program to store the coefficients of the polynomial
prod, which is the product of the polynomials poly 1 and poly 2. Assume
that poly 1 and poly 2 are of degrees nl and n2, and that the coefficients
are stored in positions corresponding to the exponent.

C. Incremented Indexes

It is often desirable to refer to sets of elements of an array which
are in some fixed relation to each other. In the ACT-III language, if an
array name is followed by an index name and an integer program constant,
in either order, the sum of the index and the constant is taken as the index.
For example, if i = 1,

arrayili 25— Na T raiyvl 25— No rr a2 6
provided, of course, that array has a dimension of 27 or more.

Any two variables, or two variables and a constant, or single
variable and an integer constant, which are not separated by an operator
are interpreted as a subscripting of the first-named variable. If the
second variable has not been declared as an index, an e8 error stop will

occur. If the second variable has been defined as an index, the program
will be interpreted as written, even if it was not so intended.

EXERCISE 20
The Bessel function Jn(y) obeys the recurrence formula
Ta-1(y) = @0/¥)In(y) - Jani(y)
Assume that values of J(y) and Jy4,(y) are given. Then write a program
to compute the values of Jo(y), Ji(y),...Jp41(y) and store them in the ar-

ray J, with J'0' = Jy(y), etc.

D. Double Subscripts

Two-dimensional arrays, such as matrices, are defined by the
same dimension statement as is used for one-dimensional arrays. How-
ever, the elements of such arrays are defined by a double-index statement
of the form

dbind'ij".

This statement defines a two-element array ij, with elements ij'0' and
ij'l. Now, after the (integer) number of columns has been placed in

array'Q', the value i has been placed in ij'0', and the value j in ij'l', the

statement array'ij' will refer to the element in row i and column j of the
array.

EXERCISE 21

Write a program for finding the product of an (n X n) matrix by an
n vector. Include dimension statements, permitting n to be as large as 10,
and the necessary index and double-index statements.

518

54

XIV. ITERATIONS

In using subscripted variables, as well as in a number of other ap-
plications, we frequently find outselves performing an operation for some
value of an integer, which we will call the controlled variable, then chang-
ing the integer by a given amount, and repeating the operation until the in-
teger reaches some limit. We did this twice in our polynomial evaluator
in Section XIII: the first loop was used to read in the values of the coeffi-
cients (statements sl' through s4'); the second loop evaluated the polynomial
(statements s2' through s5').

Since this type of calculation occurs so frequently, ACT-III provides
a special way to carry it out. In the latest version (T-5) of the compiler, a
loop of this kind is created by labeling the first statement of the loop (after
initializing the controlled variable and any other variables needed) and plac-
ing at the end of the loop the statement

for'controlled variable'step'increment'until'limit'rpeat'sX".

In this statement, the name of the controlled variable is inserted between
for' and step': the amount by which it is to be changed is inserted between
&p' and until'; the limit which is to be passed to leave the loop is inserted
between until'; and rpeat'; and sX' denotes the statement number of the start
of the loop.

The controlled variable must be an integer. It may be either a
simple integer variable, or a subscripted variable such as one component
of a double index. The increment and limit may be integer program con-
stants, simple variables, subscripted variables, or arithmetic expressions.
The iteration terminates when the value of (limit-controlled variable)

X increment becomes negative. There are no restrictions on sign of the
increment or of the limit.

The for' statement
for'cvar'step'delta'until'limit'rpeat'sX"
produces essentially the same object program as would

delta':'temp"
prey'itlcvariicyarll
if'['['prev'i-'limit'i-'temp']'ix'temp']'neg'sX".

This object program insures that a zero increment will not cause a per-
petual loop.

5115

There is no special instruction in the ACT-III language for iterating
with a floating-point controlled variable. On the few occasions when this is
desired, two alternatives are possible. The first is to produce the desired
floating-point controlled variable by floating an integer with the proper
scaling and using a for' statement to increment the integer representation.
The second is to write a section of programming equivalent to that produced
by the for' statement, but using floating-point arithmetic. For example, sup-
pose thatitis requiredto evaluate some function fct at intervals of 0.01 in the
independent variables y. Two ways of accomplishing this would be

Ol lytt

sillt 2okl
callllfctl
previ:'temp!
c il 2 pr iyt
1608'print'temp"

for'y'step'l'until'100'rpeat's1",

or
Ol:ly"
Sl vl iitempl
callifet!

prev':'temp"
cr'l602'dprt'y"
1608'print'y"
y-|+l.llle_| 1|:7Yll
prev'-'.1005"e'3"

el

The first form is preferable for several reasons. First, it avoids the in-
accuracies due to buildup of roundoff error in repeated addition of 0.01.
Secondly, floating-point arithmetic is slower than integer arithmetic.
Finally, the last loop would make no provision for the possible vanishing of
the increment if it were allowed to vary. A loop with a zero increment is
not an uncommon form of programming blunder.

Loops may be used within loops to any desired depth. If a loop is
entered by a use' statement to some statement inside the loop, the con-
trolled variable may not have been properly initialized. Caution is indicated.

56

EXERCISE 22
Write a program for reading the elements of a matrix with m rows

and n columns into an array A. The matrix will always obey the condition
m Xn = 225.

EXERCISE 23

If A is an (m Xn) matrix and B is an (n X q) matrix, then the prod-
uct C is an (m X q) matrix, the (i,j)th element of which is given by

n
Ci,j = i o
: kZl E J
Write a program for finding the product of two matrices.
EXERCISE 24

The binomial coefficients (rrrll) obey the law

(n;l) - (r?l) ! <mr_11)’

0ifk >norif k<0

—

B

~
Il

and

(-

Use this information to write a program for computing the binomial coef-
ficients of order nu.

EXERCISE 25

Write a program for computing n! = 1 X2 X3 X ...Xn.

XV. ADVANCED CONTROL OPERATIONS

In Section VIII (Elementary Control Operations) we learn to use the
flow-directing operations use', trn', if', and bkpX'. With these opérators in
mind (a review might be necessary) we will now proceed to more advanced
control operations.

57

A. Recalling a Subroutine

In lieu of a procedure, the same section of programming or sub-
routine can be recalled at several places in the program. To do this, the
last instruction in the subroutine must be labeled accordingly. For ex-
ample, the statement

ret'sE'use'sB"

may accomplish this purpose, provided sE' is the label of the last state-
ment of the subroutine and is of the form

sBEl!goite!sQl,

and sB' is the label of the first statement of the subroutine. After the
statement

ret'sE'use'sB"

is executed, the statement sE' is changed to use' the statement following
use'sB"Y.

B. Setting Switches

Switches can be set to enable decisions to be made on the flow of a
program at a place other than the place where the flow is to be changed.
For example, it may be desired to change the course of a loop depending
upon some variable which does not change during the loop. It would then
be wasteful to test this variable each time the choice had to be made in the
loop. The statement

set'sE'to'sX",

where sE is sE'go to's0", replaces sE by use'sX" and goes on to the
statement following the set' statement.

A go to' statement must be preset before it is encountered in
executing the program. The operator go to' is not equivalent to the operator
use'. Both are translated into an unconditional transfer (u) instruction in
the object program. However, in the statement

use's0'

s0' will be interpreted as the name of a variable and will be assigned a
location in the variable storage area. In the statement

go to's0'

58

s0' will be interpreted as the name of the statement itself, and the object
program will contain an unconditional transfer to the instruction itself. If
this instruction is executed before the instruction has been modified by
either a set' or ret' statement, the computer will enter a one-word loop.
The COMPUTE light will remain on, but none of the registers on the oscil-
loscope will show any change. This behavior guards against the undeter-
mined actions which might take place if a switch were entered before it had
been¥set:

EXERCISE 26

A program to compute the Zilch function of the result of the last
operation is located between statements s10' and s12'. A program to com-
pute the Nussbaum function is located between statements s20' and s12'.

In computing the function u(y), the initial value of y is destroyed. If the
initial value of y is positive, it is desired to compute the product

Z(w) X N(u); if the initial value of y is negative, the product Z(u) X N(w);
or if the initial value of y is zero, the product N(u) X N(w) is to be com-
puted. Use switches to accomplish these results, remembering that the
value of y will have been changed before the functions N and Z can be
computed.

C. Indexed Switches

A final device for changing the course of the program depends upon
the subscripting. If i has been defined to be an index and if the statement
before sT' has the form

use'sE'use'sD'use'sC'use'sB'use's A",
the statement

use'sT'i"
will transfer to sT' if i = 0; to sA' ifi = 1; to sB' if i = 2; to sC' if i = 3; to
sD'if i = 4; and to sE' if i = 5. If i is outside the limits 0< i = 5, unex-
pected results may occur.

Only variable subscripts may be used in this way. The statement

use'sT'2!'
will transfer, not to sB', but to statement (T - 2). Similarly, the statement

uselsT'il2!

will transfer to the ith-order preceding statement (T - 2).

50

Subscripted statements cannot be used after go to' or after use' in a
ret'sX'use'sY" statement, or after zero' in an if' statement.

EXERCISE 27

On certain occasions, the computer may be instructed to compute
several problems withoutinterruption. Accordingly, the data tape must con-
tain not only the data for the first problem, but that for several problems,
not necessarily of the same type. In our exercise, we may wish to treat
sets of data on tape in any of four different ways. Instructions for the first
process start at s10', those for the second at s20', those for the third at
s30', and those for the fourth at s40'. Upon completion of each process,
the program transfers to s100.

Write a section of programming starting at s100'. Give a sample
input for the processing of five sets of data: the first by process 1; the
second by process 3; the third by process 2; the fourth by process 4; and
the fifth by process 2. Also, instruct the computer to stop after the fifth
set has been processed.

D. Calling Procedures

The call' operator used for calling procedures has the same effect
as the statement

ret'sP'use's(P +1)",

where sP' is the first instruction of the procedure and s(P + 1) is the second.
Unlike the ret'use' statement, call'proc' can have the address modified by a
constant subscript. Thus, the statement

call!proct2!

will place the return address in the second instruction before the beginning
of proc', and will transfer to the first instruction before it. This technique
is useful when it is necessary to leave and reenter a procedure.

XVI. SPECIAL OUTPUT AND INPUT

The essentials of a definitive program (see Section IX) emphasize
the liberal use of explanatory comments in the program itself and, particu-
larly, the assignment of descriptive labels to the input parameters. The
same applies to output. Output is more likely to be referred to long after
the details of the program which produced it have been forgotten.

Although proper planning of format can do a great deal toward
clarifying output, alphabetic text is by far the most effective way of

60

explaining the output layout. ACT-III provides two operators for producing
output of all the characters and functions of the Flexowriter keyboard.

A. Programmed Alphabetic Output

A statement consisting of the operator daprt' followed by a sequence
of characters and spaces, each separated by stopcodes, will cause the char-
acters appearing after the operator to be printed. If it is desired to produce
the typewriter control functions, the following mnemonic codes must be used:

lower case Jeli
upper case uc2'
color shift color'
carriage return cr4'
backspace bs5!
conditional stop stop'
apostrophe ap'
tab tab6'

For example, the statement:

daprticrdltabblucZ!Ellcl!x!a'm!p!lle! totfiluc2iDilcliit rlclcitisnc i
AR 2l bl el tlitcllne 2V Pl e Tl inlthiin ol
when executed would produce the output
Example of Direct Alphabetic Printing.
The daprt' operator produces two instructions for each character
and thus can consume a large amount of object program space; however,

daprt' is fast and simple if the space can be afforded.

B. Alphabetic Output and Input of Coded Information

A second alphabetic output operator, aprt', requires less program
space and prints coded alpha-numeric information which is stored as a
variable. Up to five characters or typewriter control functions can be
stored as single variable. The variable may be subscripted. For example,
the statement

aprt'alpha"

will cause the alpha-numeric contents of alpha to be printed. If, by error,
alpha does not contain coded alpha-numeric information, it will be inter-
preted as alpha-numericdata, regardless. If some of the characters are
not acceptable to the Flexowriter, a print stop may occur. If the variable
is a negative number, nothing will be printed.

61

The alpha-numeric information in the variable may be inserted by
the operator aread', followed by the name of the variable in which the alpha-
numeric information is to be stored. When this statement is executed, a
single word is read from the tape, containing up to four characters of alpha-
numeric information in the special code given in Appendix F.

C. Repeated Alphabetic Output

The operator reprt' can be used to print a consecutive string of
identical characters - for example, a line of periods to separate cases of a
problem - or to carriage return to the next page. The operator has an in-
teger left operand, giving the number of times the character is to be printed,
and a right operand which is the character, or the operation to be repeated.
If the left operand is negative, nothing will be printed. For example, the
statement

5!reprticrd!

would produce five carriage returns. The reprt' operator with its operands
must form a separate statement.

D. Compatible Output

It is occasionally helpful to punch output on tape in a form which can
be accepted later as input to the computer. If it is desirable that the output
be legible to the programmer, the operators punch' and ipch' cause the
right operands to be printed (and punched if the punch is on) in the form used
for floating-point and integer problem parameters, respectively. The num-
bers being output must obey the restrictions on problem parameters. In
particular, if the right operand for ipch' has more than seven digits, an e3
error stop will occur.

E. Hexadecimal Output and Input

If it is unnecessary for the programmer to understand the inter-
mediate data, as, for example, if the output from one program is to be
processed by another, hexadecimal output may be used. The operators are
hxpch' and rdhex'. The former causes the right operand to be punched out
in hexadecimal format; the latter causes a hexadecimal word to be read and
assigned to the right operand. Hexadecimal input and output are faster and
more accurate than decimal input and output, since there is no need for
binary-decimal conversion, which is slow and inexact.

F. Read and Float

Occasionally only floating-point operations may be required on a
number which is given in integer form on the data tape. This may be ac-
complished by the two statements:

62

iread'temp"

j'flo'temp':'float".

These statements would read an integer from the Flexowriter or reader,
store it in temp', then convert it to a floating-point number equal to temp'
multiplied by (0.1)J, and store the results in float'. The same result can be
obtained by the single instruction

1! ndfle'float!ts
EXERCISE 28

Write a program and include any input data necessary to produce
the following output format:

The first line of each page of output is to be labeled with the pro-
grammer's name and the date. (This information is to be read in coded
form from tape.) The second line is to contain the run number and the page
number. (Initial values are to be read from tape; subsequent values are to
be assigned consecutively.) The results for each run are to be displayed in
sets, each set consisting of three lines of data followed by a blank line. The
number of sets is variable. Each run is to start on a new page. The printed
page size should measure 84 spaces wide and 66 lines long.

XVII. WRITING NEW PROCEDURES
Eventually many programmers will want to write their own pro-
cedures, either because they need a specialized set of programming which
requires more complicated input and results than can be provided by the

ret'use' statement, or because they wish to contribute to the library.

A. Basic Requirements

Each procedure requires an enter' statement, at least one exit'
statement, and an end" statement. The translator includes tests to deter-
mine that each end" statement has been preceded by an enter' statement,
that an exit' statement occurs between each enter' and end" pair, and that
a new enter'statement is not made before any previous procedure has been
ended. Failure to observe these conditions will cause an e4 error printout.

Ordinarily, a procedure communicates with the remainder of the
program through the results of the last operation before entering and leav-
ing it, and by its arguments. Statement numbers may be duplicated between
a procedure and the main program. Names of variables also may be du-
plicated, except for variables named before the operator local', if it appears
(see Section D, Global Variables).

Each procedure is prefaced by the operator enter', followed by the
name of the procedure, and then by the names to be used for the arguments.
When the procedure is called, these names will be replaced by the names in
the procedure call. The enter' statement may be preceded by a statement
consisting of stop' operators, and of use'0’ phrases.

The operator exit' is used to return from the procedure to the main
program. It may be used at any place within the procedure.

The operater end" designates the last statement of a procedure.
When this statement is read, all statement numbers and variables local to
the procedure are erased from the directory, and can no longer be referred
to.

B. References to Arguments

The arguments specified in the procedure call may be arrays. With-
in the procedure body, all the arguments must be referred to as arrays.
Even an argument which is actually a simple variable must be referred to
as an array of dimension 1, with the subscript 0 stated explicitly. For ex-
ample, in the Zilch procedure with entry statement

enter'zilch'svar'array"

the argument svar' is a simple variable. Within the procedure, svar' must
be referred to as svar'0'.

The procedure body must include all necessary definitions of arrays,
single indexes, and double indexes for the quantities which are used inside

the procedure.

C. Temporary Exits from a Procedure

If a procedure, such as a quadrature routine or a differential equa-
tion routine, requires a function as an argument, the statement before the
enter' statement may be used. The call' operator places a return transfer
to the statement following the call' statement in the first order of the pro-
cedure being called and transfers to the second order. Since SX'i' is the
ith location before SX', the statement

call'sub'1"

occurring somewhere inside the procedure sub' will place the address of
the next statement in the location one preceding the beginning of the pro-
cedure, and will transfer to the first instruction of the procedure, which
returns control to the statement following the subroutine call. To return
to the procedure where it was left, the statement call'sub'2" will place
the return address in the second location before sub', and will transfer

63

64

to the first instruction before the procedure. The call'sub'l" statement
inside the procedure has already placed the return address in that loca-
tion. For the return addresses to be useful, they must be inserted into
transfer instructions. These may be produced by inserting one use'0’
phrase in the statement preceding the enter' statement for every transfer
to be made.

The exit' statement is ineffective if the procedure has been left pre-
viously by the technique described above. Instead, the final exit is made by
the statement use'sub'n", where n is the subscript used for the last call'
sub'n" instruction to return to the subroutine from the main program.

If an address was not set in location sub'n+l' by a call'sub'n+1",
or a set'sub'n+l", before the statement call'sub'n" or use'sub'n', the
program will usually stop in track 62.

The statement before the enter' statement can also be used to store
parameters needed by both the procedure and the main program. In this
case, a stop' in the statement before the enter' statement will reserve one
storage location.

To illustrate, let us suppose that the procedure Zilch requires one
intermediate exit to provide a function value, and one temporary storage to
be available to both procedure and main program. The beginning of the

procedure might be

stop'use'0'use'0"

enter'zilch".

The intermediate exit would be made from within Zilch by the
statement

callizilchl It
the return to Zilch by

call'zilch'2",
and the final exit by

use'zilch'2".

The variable would be referred to as zilch'3' by either the main program
or the procedure.

65

D. Global Variables

The latest version of ACT-III allows an exception to the rules that
all variables introduced in a procedure are local to that procedure, and
cannot be referred to from outside the procedure, and that a procedure can-
not refer to any variables defined outside the procedure. If the operator
local' appears in a procedure after the enter' statement, all variables named
between the enter' operator and the local' operator are made nonlocal or
"global," i.e., they have the same significance inside and outside the pro-
cedure. If the local' operator is followed by other names in the same state-
ment, they are interpreted as a continuation of the parameter list from the
enter' statement. In this case, only a dim' statement can appear between
the enter' statement and the local' operator.

Once a variable name hasbeen identified as global, it remains glo-
bal for all procedures translated thereafter. (Any other statement trans-
lated before a procedure would require a jump to the main program and
will result in an error stop when the end" statement following the procedure
is translated.) For example, in the following sequence of programming:

enter'zilch"

(sbiramE LU ot e (1 a, b, and c are global variables'

local'u'v'w" u, v, and w are the formal parameters'
g 1! alalwll r is local to zilch procedure'

exit"

end"

enter'beer"
dim'r'l's'1l" r, s are global variables'
local'bud'blatz" bud, blatz are formal parameters'
s2' bud!Dt:all this a is a global variable'
g3/ i lol
s4' rliblatz!0"

66

3taten
4l:lrll
5l:lsll

call'zilch'arg'é'arg'7'arg'8"
call'beer'arg'l0'arg'20"

Global names are useful in allowing simple communication of
parameters which will always have the same name between procedure and
main program. However, they are not recommended for library proce-
dures or for other procedures which may be used several times in differ-
ent contexts. It is recommended that any global variables used be listed
explicitly in the operating instructions for the procedure, and that wher-
ever possible they be given names distinctive to the procedure. One con-
vention 1is to use the first three or four letters of the procedure name,
followed by a number, letter, or other character. For example nonlocal
variables used in the Zilch procedure might be named: zilcl', zilc2',
zilca', and so on. The likelihood of unintentional duplication of names of
this type is minimal.

E. Checking Procedures

Checking procedures requires some special consideration. Since
ordinarily procedures which are used have already been checked, complete
procedures with enter' and end' operators are not normally trace-compiled,
regardless of the position of the TRANSFER CONTROL button. It is, of
course, helpful to be able to bypass this rule when errors are detected in-
side a procedure. To trace-compile a procedure the following rules must
be obeyed:

(1) The procedure to be checked must have the statement trace"
included immediately after the enter' statement. To avoid
remaking the tape, it may be typed in from the keyboard. This
is done by depressing the MANUAL INPUT lever on the Flex-
owriter as soon as the second stopcode of the enter' statement
has been read.

(2) The TRANSFER CONTROL button must be down. The trace
will not include statement numbers within the procedure which
are erased when the end" statement is read.

To preserve these statement numbers, the following additional rules
must be followed:

(3) The statement before the enter' statement must begin with
use'sS', where sS' is the first statement of the main program.

(4) All other procedures necessary must have been translated
previously.

(5) There must be no duplication of statement numbers or of
local variable names between the procedure being checked and
the main program.

(6) The end" statement must be omitted from the procedure being
checked.

The conditions which must be observed in checking out a procedure
make it advisable to check outeachprocedure separately from the program
in which it is to be used. The effort required to write a small program to
provide input, the procedure call, and output to drive the procedure being
checked is well spent.

In checking procedures, it is necessary to concentrate attention on
one at a time. For complicated programs, this practice is advisable even
when it is not enforced by the language. Most experienced programmers
find a systematic approach of this sort the best approach to program
checkout.

XVIII. MACHINE OPERATIONS

The operators described in this primer represent combinations of
sixteen basic machine operations designed to perform any operation of which
the computer is capable. ACT-III provides for the incorporation of machine
operations. The operators are:

bring' (b) hold' (h)
add' (a) clear' (c)
subtr' (s) stadd' (y)
mult' (m) ret! ()
nmult' (n) use' (u)
div' (d) stop' (z)
extrt' (e) trn' (t)

They have right operands, which are the addresses of the machine orders,
and leave their results in the accumulator. Their use requires a knowledge
of machine language programming, which is beyond the scope of this primer.
Further information can be obtained by writing POOL, the LGP-30 users'

organization.

68

XIX. CONCLUSION

Our introduction to the language of the ACT-III compiler is now
completed. It is a powerful aid to programming algebraic and scientific
problems, and produces object programs which are more efficient than
most interpretive routines or unoptimized machine codes. Its scope is,
indeed, wider than scientific programs. The inclusion of basic machine
operators permits it to be used as a convenient and effective symbolic
assembly program, andto express any program which can be programmed
for the LGP-30 by any means. Such problems as symbol manipulation,
data reduction, and many others fall within the range of the programmer
skilled in itsuse. Further skill in the language must be obtained primar-
ily by practice and experimentation; this is left to the reader.

Error
Printout

el
el

e3
e4

eb5
eb

e’
e8

e8
e8
e8

e9
s000 0000

SXXX XXXX

69

APPENDIX A

Errors at Compile-Time

Meaning
Symbol table full
(max. 126)

Too many constants
(max. 63)

Incorrect constants

Improper use of "end,"
Eenterilifioralie xitll

Invalid bracket count

Statement too large

Statement number too
large (max. 191)

6-bit button up

Invalid subscript
Invalid operator

Stopcode missing from
previous "dim,!" "index,"
Ydbrnd il enber M oT
"local" statement

Invalid or missing operand |
Storage exceeded

Undefined statement

Remedy
Put some variables into
regions

Read in some as data

Correct tape and restart at
beginning of statement

Segment statement and restart
at beginning of statement

Correct tape and restart at
beginning of statement

Restart at beginning of
statement

Correct tape and restart at
beginning of statement

Rewrite program

Correct program and recompile

70

APPENDIX B

Errors at Run-Time

NOTE: Continuing the program after an error display will produce

invalid results.

Operator

ha e, /
exp, flo, x10p, pwr

/

pwr

In, log

sin, cos

sqrt

15, i/, unflo, fix

ipwr

Error Type

el
el
€2
c2

ea
e
ez
€3
=5

Meaning

Floating-point overflow
Floating-point overflow
Division by zero

Left operand negative;
or left operand zero and
right operand negative

Operand zero or negative
Operand greater than 10®
Operand negative
Integer overflow

Left operand zero and
right operand negative

APPENDIX C

ACT-III Operators

Page Code Example Meaning Precedence
SRl Left bracket (maximum of 7)
] Right bracket (brackets over-rule
precedence)
I3 allh! Substitute value a into b 0

(a unchanged)

15 + abilinl Floating-point addition 1
5= ai=!'b! Floating -point subtraction Il
17 0- 0-'aa' Floating-point negation of aa 3
5 x alx!b! Floating-point multiplication 2
15 / nu'/‘ den' Floating -point division 2
47 i+ nlitllc! Integer addition il
47 i- mili et Integer subtraction il
47 ix el k! Integer multiplication 2
47 i/ j'i/ k! Integer division 2
47 nx gl Fast integer multiplication for prod- 2

uct < 134,217,728

17 abs abs'av' Absolute value of floating-point av. 2
48 iabs iabs'kk' Absolute value of integer kk 3
48 flo n'flo'b' Generate floating-point equivalent of 3
integer b with last n digits fractional
(b unchanged)
48 unflo j'unflo'b’ Generate rounded integer equivalent of 3
floating-point b with decimal moved
Jj places right
48 fix jlfxlbl Unfloat but drop fractional digits 3
48 ipwr a'ipwr'n' Integer a to integer n'th power 5
49 x10p a'x10p'n' Move decimal point of floating-point 3

a, n places right

e

Page

Code

Example

INPUT-OUTPUT

23

61

24

25

23

61

61

Z5b

61

60
60

61

61

61

31

26
26

read

punch

print

dprt

iread

rdflo

ipch

iprt

aread

aprt

daprt

reprt

hxpch

rdhex

rdxit

cr

tab

read'a"

punch'a"

n'print'a"

i'dprt'a"

iread'a"

n'rdflo'a"

ipch'n"

' iprtil"

aread'b"

aprt'h"

daprt'n'e'g"

n'reprt!cr4!

hxpch'a"

rdhex'a"

rdt s TS

(el

tab'

Meaning

Read floating-point number and store
in a
Punch floating-point a with condi-

tional stops for input

(n = 100c + s) print a as a floating-
point number in ¢ columns, rounded
to s significant digits

(1 = 100c + s) print floating-point a
as decimal number in ¢ columns
with s fractional digits

Read an integer number and store in a

Read integer, convert it to a floating-
point value with last n digits fractional,
store in a

Punch integer n with conditional stop
for input

(n = 100c + f) print integer i in min-
imum of ¢ columns with f fractional
digits (f not exceeding 8)

Read one word in alphabetic code
into b

Print b as alphabetic information

Print specific characters; example,
neg

Print individual character or con-
trol n times

Punch a as a hexadecimal word with
conditional stop for input by rdhex

Read a hexadecimal word and store
i a

Data input terminates when a blank
word is read; control is transferred
tois 13!

Execute typewriter carriage return

Execute typewriter tab

*Precedence does not apply

Precedence

Page Code Example
CONTROL

29Nty trnlsi!

29 use use's8"

32 stop stop"

Gl retls2!
go to use'sl"

57 set set's2’
to ta'al2"

33 bkp4 bkp4'
bkp8 use's2"
bkpl6
bkp32

34 oflow oflow!'

use's2"

AN for fior)
step step'd’
until until'j'
rpeat rpeat's3"

ZORSS £ if'a'neg'sl"
neg if'a'neg'sl!zero's2"
Zero ifla'nepg'sl!pos!sa!
pos

14 prev prev'-'cv'

50 index aridezliciol

52 dbind dbind!il;!

50 dim dim'coef'10'

Meaning

Transfer control to s7' if accumula-
tor neg.

Transfer control to s8', regardless

STOP! Continue if "START" pressed
on console

Transfer to sl' after storing return
address at s2', written s2'go to's0"

S2', of the forms2'go to's0", is made
to read s2'use's72"

For machines with overflow logic
mod. only; transfer control to s2' if
the bkpt. switch is down (on) otherwise
to the next sequential statement

Transfer to s2' if overflow occurred
during preceding it or i- (overflow
logic mod. only)

Increase integer m by integer d,
transfer to s3' if the new value of m
is not greater than j, otherwise to
next statement L

If floating-point or in-
teger a is neg, transfer
control to sl' if zero to

if'a'neg'sl'zero's2'pos's3" s2', if pos to s3', or

bn'44"

next statement if tests
fail

Last result to be the operand (must
be first operation executed in the
statement)

Set up k and n for use as subscripts
(maximum of 30)

Set up i, j for use as double
subscripts

Reserve 10 sequential locations for
coef region, 44 for bn region

*Precedence does not apply

Precedence

78

74

Page Code Example
FUNCTIONS
i sqrt sqrt'a’
17 1In In'a'
e log log'a'
157 exp exp'a’
N7 s pwax a'pwr'b'
17 sin sin'a'
17 cos coslal
LT artan artan'b'
17 randm randm'
SUBROUTINE OPERATIONS
62 enter enter'calc'
b12"
59 call call'calc!
arg arg'a"
65 local local"
62 exit exit'
62 end end"
66 trace trace"
46 wait wait'
47 remdr remdr'

Meaning

Square root of floating-point a
Natural logarithm of floating-point a
Common logarithm of floating-pointa

E raised to the floating-point a'th
power

Floating-point a raised to floating-
point b'th power

Sine of (floating-point a in radians)
Cosine of (floating-point a in radians)
Floating-point angle in radians whose
tangent = b

Generate pseudo-random floating-
point value between 0 and 1

Denotes start of source language sub-
routine named calc bl2 is a dummy
symbol which refers to a sequential
block of data specified in the main
program-calling sequence

Main program-calling sequence which
transfers to the subroutine named
calc and makes dummy symbol bl2
mean and refer to actual region a

Denotes that variable names preced-
ing local in the subroutine are global

Return control from subroutine to
main program

Denotes end of source language
subroutine

Subroutine will be trace compiled if
TRANSFER CONTROL button is down

Suspends compilation

(Special symbol) remainder of previous

_ié operation

*Precedence does not apply

Precedence

W W W Ww

APPENDIX D

5

Summary of Operations

Listed below are the most generally used "button pushing" opera-
tions for ACT-III. The steps marked with an asterisk (*) pertain to
console buttons and those unmarked either to the Flexowriter or to the
reader-punch (for use with the ACT-III composite system tape).

READ COMPILER

Compiler tape in photoreader
Source in flex

NSelNrdr s @ flex

FOQIGINES,

COMPILE SOURCE PROGRAM
I, O Sel flex

*6-Bit, T.C. down

Start

PUNCH HEX TAPE
(H.S. punch)

I Sel flex

Flex manual down
*@.C.N.S. doat2900!
Start O Sel punch
*Bkp 32 down Start
(Flex)

[T @NSelrflex

Flex manual down
F@EELINZS

doat2900' Start
Flex punch on - identify
Start

READ RUNNING TAPE P5B
P5B in photoreader

I Sel rdr, O flex

Data in flex O.C.N.S.*

PROGRAM IN MEMORY
I, 0 Sel flex

Flex manual down
*0O.C.N.S. doat0300'
Start Flex manual up
Start

PROGRAMNOT IN MEMORY
I Sel reader, O flex

Read P5B and Hex tapes

I Sel flex

Flex manual down O.N.S.*
Flex manual up

RESET COMPILER
T-Tape in flex

1,0 Sel flex
*@C.IN.S"

LEGEND

I, O Input, Output

Sel Selector switch

rdr photoreader

fle= typewriter or Flexowriter
@ Transfer control button
Bkp Breakpoint button

doat2900'/0300'
O.C.N.S.

O.N.S.

buttons

typed from keyboard
One operation, clear counter, normal, startcompute

One operation, normal, start compute buttons

76

sl'
s2'
g5l
s4!
s5!
s6!
sl
s8'
s9!
s10!'
sll!
sl2!
siS!
sl4!
siEk
sl6'
il
s18'
sl9!'

520!

APPENDIX E

ACT-III Operators and Decimal Memory Print

The first two codes (underlined) below are a jump to the statement
stop routine, and a jump to the first executed instruction of the program.
They are found on every ACT-III object program.

2B

bl Ll
a'tl. 3141159 et 15t
A=l
alzlblicl

2! /bty
a'print'b"
2ldprt!p!!
readiall
alidlhls el

a bt
alis Hlial!
alixlBihich
aﬁ/'bH'c"
alinx!ibllicY
alipwr!bl;’ch
alxlOplbltc!
uselsl?

for'a'step'l'until'b’
rpeatlis

wait!'

0300 u6048 u0302

The next six statements are traced!'

821"
s22'

s823!

iread’a"

1Nprilial

abs!altlhl

0302 ,00111gqwj h3062
0304 ,00211qwj h5336
0310 ,00311qwj h5336
0316 ,00411qwj h5336
0322 ,00511qwj h5336
0328 ,00611qwj h5336
0334 ,00711qwj h5336
0339 ,00811qwj h5336
0344 ,00933034 14900
0347 ,00fl11lqwj a3062
0350 ,00gllqwj a6201
0353 ,00jllqwj s3062
0356 ,00kllqwj h5336
0362 ,00qllqwj h5336
0404 ,00wllqwj n3062
0408 ,01011qwj h5336
0414 ,01111qwj h5336
0420 ,012f0308
0421 ,01313q04 h5739
mb5739
0429 ,02933£0j
0429 ,02933f0j w5821
0434 ,01633f0j w5821
ub552
044155007 33 F0 58 21

b3062
b6200
b3062
b3062
b3062
b3062
b3062
h3063
h3061
h3061
h3061
b3062
b3062
50957
b3062
b3062

a3063
t0302

r5506
b3060

b3063

r4813
r4813
r4813
r4813
r4813
r5506
r5506

r4813
r4813
h3061
r5506
r4813

h3063

u5500
h5336

r5506

u4600
u4600
u4835
u4807
u4707
ub5130
u5201

u4200
u4300

u4500
u4510

53062

h3063
b3063

t5161

h3061
h3061
h3061
h3061
h3061

h3061
h3061

h3061
h3061

s5739

r5506

h3062

s24!'
s25!
s26'

End
s27"
s28'
sS2 9!
s30'
s31'
s32'
533!

s34!'
S5 5]
s36'
537!
s38!'
539t

s40'
s41'
s42'
s43!
s44'
s45'

s46'

s47'
s48'
s49'

iabs'a';'b"
punch'a"
wait!'

of trace '

ipch'a"

aread'a"

apntiat

el

if'a'neg's1"
if'a'neg'sl'zero'sl"

if'a'neg'sl'zero'sl!’
pos!sL!

if'a'zero'sl'pos'sl"
CI‘"

tab"

a'flo'b’ Ayl
prevv_'_lal ;lb"

alnclflolblslic!

atnnflolibltctl
alfix!blilc!t
dipalal 10!
index'jk"
dbind'ij"
daprt!dia'plr't"

a'reprt'cr4"

stop"
mdsitisll

ret'sl'use's2"

0447
0453
0458

0458
0461
0500
0503
0504
0506
(052115

0518
0524
0526
0528
0534
0559

0547
0553
0559
0559
0600
0605

0615

0625
0626
0629

,01833f0) ub5821

,01933£0j 5821

,03511qwj

r5506
ub861
r5506

,03511qwj
03378
,01kl1qwj
,01qllqwj
,0lwllgwj t0302
,02011qwj t0302

t0302
t0302

,02111qwj

,02211qwj t0522
,02381000

,02481800

20000
20000
,02511qwj h5336
,026j3590 b3063

h5336
h3062

h5336
h5336

,02711qwj

,02811qwj
,02911qwj
,055£0600
,055£0600
,02j£0614

u0561
r5619

z0001
pl300

,02k81500

,02q1llgqj mb5662
a5809

,02w00000
,03033620 u0629
,03130308 w0304

b3063
b3063

u6000
h3063
ub5759

t0511
t0516

s6109

b3062
r4813

r5506
h3061

b3062
b3062

r5635
ub5607

p5700
20001

t0620
t0619

u0302

r5506 t5740 h3062

15506 T

t0302
t0302

s6109

s6109 mb5662

t0302 mb5662 t0302

r4813 u4528 h3061
u4600 h3062

ub500 48135 w4528

+5506 u4414 h3061

r5506 u4207 h3061
ub5600 -r5602
z4600 -r5609

20001 p3300
p4500 20001

u0624 23200
h6309 23200

z0001

p1600

i

78

s50!
551
s52!
s53t
s54!
gbh1
s56'
s57!
s58'
B59!
s60'

56!
s62'
s63!
s64'
s65!'
s66'

Note:

go to's0"
Lrnls]
sqrt'a';'b"
Intalslsl
Toglal:;ibl
explalibt
alpwrlbilict!
sintalyibl
caslaliibl
artan'a';'b"

randm';'a"

getlislitolis2!
bkp4"
bkp8"

rdhex'a"

call'sub'arg'a"

hx‘pch'a"‘

0631
0632
0633
0637
0641
0645
0649
0655
0659
0663
0703

0713
0716
0718
0720
0724
0727

,032£067j

,033g0308
,03411qqj
,03511qqj
,03611qqj
,03711qqj
,03811qqj
,03911qqj
,03f11qqj

,03gllqqj
,03j12q94

,03k30308
,83q00400
,83w00800
,040k3590
,04131qj4
,04211qqj

r4813
r4813
r5506
r4813
h5336
4813
r4813
r4813

h4801
h5254

u0716
u0719
u0721
p0000
u3050
r5506

The 0-' operator consists of a r5506 u5161.

u3100
u3700
u3807
u3900
b3062
u3400
u3500
u3200

b5254
r4813

u0304

i0000
z3059
u6037

h3062
h3062
h3062
h3062
r5506
h3062
h3062
h3062

n4947
u5003

h3059

z0000

u3800 h3061

mb5629 e4834

h3059

Symbol

Ll
x2
3

N4

%05

s

Tab

Lower Case
Upper Case
Color Shift
Carr. Return

Back Space

APPENDIX F

Codes for "aread"

Code

04
0j

14
1j

24
2j

34
3

44
4

06
Oa
16
la
26
2a
36
30
08
10
18
20
28
40

Symbol

Aa
Bb
Cc
Dd
Ee
Ff
Gg
Hh
Ii
Jj
Kk
Ll
Mm
Nn
Oo
Pp
Qq

Code

72
0f
6f
2f
4f
54
5]
62
22
64
63
0j
3f
32
46
42
74
156
(£
5f
52
3a
7j
4a
12
02

)

80

APPENDIX G

Solutions to Exercises

Programming problems seldom have a unique solution. The solu-
tions may vary in directness, in accuracy, and in efficiency, as measured
by speed and storage requirements. If your solutions differ from the ones
given here, compare them in these respects; it may well be that your solu-
tions are better. The real test of a program is whether it computes without

error indication and produces the desired results.

Carriage returns and tabs are used between statements throughout
the program portion of these solutions.

Integer Value

a1

b.) 321456

c.) -52

d.) 536,870,911
e.) -536,870,911
£) 0

g.) 742,125,000
h.) 3.1416

Program Constant

a.) No sign allowed
b.) Negative

c.) +1234n"

d.) +1'23456'

e.) 1!

f.) Sign needed

g.) Too large

h.) Negative

EXERCISE 1

Program Constant

T8t o rchilRl
+3214'56"'
Negative
536808
Negative

iR erEt0U
Too large

Not an integer
EXERCISE 2

Data or
Problem Parameter

RO

i
+1234!
+123456
AnIL

SEN0Z
Too large

-7000000"'

Data or
Problem Parameter

Frilt
+321456'
G

Too large
Too large
0

Too large

Not an integer

Integer Value
0

=1l
1,234
123,456
1
102
700,000,000
-7,000,000

3.14159265
NG 5] 031

g.) -.195 x 107*
h.) 253 x 10732

Program Constant

i5 1IR3 4678 lelb

a
oh)a bille Sl3 21

0

o

Negative

o

h

) Exponent sign
should follow e

(1}
—

h.) Six characters in

first word

)
)
.) Exponent too large
)
)

Fraction has sign

Only three words

EXERCISE 3

Program Constant

0!
LG
.602'"'e'24"
Negative

B3 EINB 92 G5 et
Too large
Negative

253e =521

EXERCISE 4

Number

51,234.678
5 x 1072
T s M
-.4

512 x 10°

il s e
B e YTE

.512342678

Data or
Problem Parameter

0!
1 Loyt et
+602'+24"'
=SH0ERILILY

$:3 141 508 LRI
Too large

=1 051321
F2531l=32

Data or
Problem Parameter

+5123468'+5"'
EHIEB 2

Too large
-4'+0'

F51Z b

+5121-5"
+5121-5!

+5123427'+0"'

81

82

EXERCISE 5
Data or
Problem Parameter Number Program Constant
a.) +0'+0! 0 0
b.) More than seven
digits -.123456789 x 107° Negative
@ AU -.12 x 1072 Negative
d.) +123456'+7' .123456 x 107 .1234'56'e'7'
e.) +1230000'+7" .1230000 x 107 123 et
f.) Leading zeros Al oo lof .123"e'3!
g.) More than seven
digits .123456789 x 107° .1234'56789'e=15t
h.) Decimal point 1234567 x 107! .1234'567'e-"1"
EXERCISE 6

Examples a.), d.), f.), g.), and h.) represent acceptable names for
simple variables.

The other examples are unacceptable: b.) has more than five char-
acters; c.)is amultiplication operator; e.) is a sine operator; i.) is a state-
ment label; and j.) is a constant.

EXERCISE 7

The values of the variables after each of the statements are:

a b c templ
0r:an 0 s : b
11 Ugtiosil 0 1 - -
Cad bl 0 1) -
a':'templ" 0 1 2 0
bl ! 1 1 2 0
[elig o)l 1 2 2 0
templ':'c” 1 Z 0 0

(eJede (o padul]
O

&

83

EXERCISE 8

(2 g =126
(1/.2)+(.8x .4) = .82
((1x.2)(1/.8) (.4) = .01
(1/.2)/.8 = 625
d1-.2x.8/.4=-3

EXERCISE 9
['['['0-'z"x".25"e'0"+'.3333'3333"e'0']'x'2"~'.5000"e'0"]'x'z"
+l_9999|99999|eIOI]lezl:lresll
zl/l[l.9999|99999|e10l+IZI/I[I.ZIIell I+lzl/l[l'3"ell+.2000"3101

XIZI]I]I]I:IreslI

z'x'['.1111'11111'e'0'+'.1888'8889'e'1"/"['z'+'.2431'3725'e'l '~
.4805'8439'e'0"/1['2'+1.1568'6275'e'1']':'res "

z'x'.1111'11111'e'0'+'.1888'8889'e'1'-1.4592'5926'e'1'/ ['z'+!
.2629'0323'e'1'-'.2709'8508'e'0'/'['z'+1.1370'9677'e'1']']': 'res"

The comparison of the expressions is shown in the following table:

TPy x,/ Constants Remarks
5 4 4 Poor approximation
3 4 <
4 8 b Best
5 8 6 Difference of two relatively large numbers.

EXERCISE 10

sqrt'['ex'x'ex'+'y'x'y']":'rho"
artan'['y'/'ex']':'phi"

rho!x'cos!phil:'ex"

rho'x'sin'phi':'y"
exl'+'ex2':'sumrl"
yl'+'y2':'sumim"
exl'-'ex2':'difrl"

vl =ty2 Gt difim "
exl'x'ex2'-'yl'x'y2':'prdrl"

84

exl'x'y2 '+ 'ex2'x'yl": 'prdim
exlixleed vyt -larolt
[lexl'x'ex2'+'yl'x'y2']'/larg':'qotrl"
[tex2'x'yl'-'exl'x'y2']'/targ': 'qotim"

EXERCISE 11

n b n'iprtin! n'print'b’ n'dprt'b'
a.) +0000000'+1234567'-5' 0 . e=0h
b.) +0001605'+1234567'-5' 0.01605 .12346 e-05 .00000
c.) +0000802'+1234567'-5' 8.02 sinc =05 .00
d.) +0000802'+1234567'+0' 8.02 2 INeN00 .12
e.) +0000200'+1234567'+0' 200 es00
f.) +0000202'-1234567!'+5"' 2.02- Selus -12346.
g.) +0001608'+1234567'+5' 0.00001608 .12345672 e 05 12345.67211940
In the interest of clarity, the output above has been arranged in
columns. Below is the output as the program has been written.
s 18]
+0000000'+1234567'-5' 0 . e-05 .
bAE000T60EIH2 345675l 0.01605 .12346 e-05 .00000
c. +0000802'+1234567'-5" 88028 1N e=05 .00
d. +0000802'+1234567'+0" SHO2SINeR00 L2
e. +0000200'+1234567'+0' 200 . e 00 .
fo 10000202 "=12345671+5! 2102~ e 05-12346.
g. +0001608'+1234567'+5" 0.00001608 .12345672 e 05 12345.67211940

85

EXERCISE 12

sl ellTerm pil (011 gikalizys

s deg'x'.1745'32925'e-"1":'rad" convert degrees to radians'
cr'1000'dprt'deg" cos'rad':'temp"
if'temp'zero's95" skip division by zero!'

1605'dprt'['.9999'99999’e'0'/'temp']" print secant’
55! sin'rad':'temp"
if'temp'zero's96" skip division by zero'

1605'dprt'['.9999'99999'e'0' /Itemp' " print cosecant!'

s6' deg'+'.9999'99999'e'0':'deg" prev'-'test':'temp"
trnls]t crldepl lid5te (tAlte st use'sl"

SHUBIEd ap et R Tn T ol Initd e fdil ISt usetshi

s96' daprt' ' ' ' ! 'u'n'b'o'u'n'd'e'd' ' ' ! use's6™

EXERCISE 13

The routine at s100 has been assumed to be f(y) = y**p. Input
for p has been added.'
s read'p" readiall previ=tvill
read'b" read'n" ['b'-'a']"/!n':'incr "
52! use'sl100"
53 aflyt=la 'zerols]l ol jump for first point.'
s4!' Wiitiner !ty "

rfiblelvines!s] 5t test after incrementing because a test for
equality might fail due to round off'

s HEREE sl usels2U
SO0 fite L 5ille Ol (S um " use's4"
s15' 1608'print'['['sum'+'f'x'.5"e'0']'x'incr']"
return for new integral'

use'sl”

sL00ISy tpwr ! pils'fY Lselssll

86

sl!'

s2'

83"
s4!'

Test Data Output

HEO000L0I NS Ras =$0000000H:04
+1000000'+1' n +1000000'+2' .49999720 e 00

+1000000'+2'" a +0000000'+0'
HHO000Q0EEZTSSn 100000 0IEEH .90991443 e 00

EXERCISE 14

Greatest Common Divisor'

iread'sml i" iread'lrg i"

prev'i/’sml alt if'remdrizerots3i sml i';'tempi"
remdr';'sml i" bring'tempi" use's2"
cr'1000'iprt'sml i" use's1l"

stop'use'sl™
EXERCISE 15

New numbers are tested and assigned until a blankword is

then the print-out is made.'

rdcit!s 10
sll' iread'max" iabs'max!':'abmax':'abmin" .
sl' iread'new" iabs'new':'abnew"
if'abmax'i-'abnew'neg's5"" if'abnew'i-'abmin'neg's6"
shiSSinew!imaxh abnew':'abmax"
s6' new':'min" abnew':'abmin"
s10" er!l 000" iprtinaaxy IOCO'iprt'min"
1000'iprt'['max'ipwr'min']"™ use'sll™
EXERCISE 16
SIS readly cr'1200'iprt'['0'unflo'y!']"

1200'iprt'['0'fix'y']" 1200'iprt'['3'unflo'y']"

12001 pEtt MBI i 1200"iprt'['['0'i~'2"]'unfloty!]

1200'iprt'['['0'i-'2']'fix'y']" use'sl™m

read -

use'sl"
use'sln

use'sl”

¥
a.) .51635
b.) .051635
c.) .00051635
d.) -51.6354
e.) 51.6354

) 51.0000
2) -.0005163542

g
h.) 516354200

0'unflo

0'fix

[loti_lzl]

3'unflo Sihhi unflo

1 0 516 516 0

0 0 52 Bl 0

0 0 1 0 0
=52 =51 =51635 -51635 =1
52 Gill 51635 51635 1
51 50 51000 50999 1
0 0 =% 0 0

Error 3 unflo stop - Number too large

EXERCISE 17(A)

Note error between 0 and 100’

0';'!1"

g1 er'5 - lortn!

S22 1709!'print'n"

tra's3"

5SS top!!!

.000000004
499999885
999999706
-149999921
E1909999 8173
249999825
299999778
.349999730
399999682
449999635
499999587
.549999539
599999492
649999444
699999396
.749999349
799999301
849999253
899999205
.949999158
999999110

o 000 0000600060000 OO0 00O 0O 0O

crtn!i="'1% "crial

29999990945
5959099849
2109990959
.159999911
209999863
.259999816
309999768
E5599901(20
.409999673
459999625
£509999577
2959999530
609999482
659999434
.709999387
759999330
809999291
.859999244
1909999196
.959999148

e
e
e

®00000000O0O0ODO®

e
e
e
e

mEs 090910 9990 e DIy

Output

-199999992
699999813
LS
169999902
219999854
.269999806
319999159
369990711
419999663
469999616
519999568
569999520
619999472
669999425
(1099081
769999329
.819999282
.869999234
1919999186
.969999139

if'crtn'zero'sl'pos's2"

01 299999956
01 1999997178
02 .129999940
02 .179999892
02 .229999844
OZRNNE 27999 0i0T
02 .329999749
Q28379999701
02 .429999654
02 .479999606
02 .529999558
Q2SS 70900618
02 .629999463
02 .679999415
02/ .729999368
02 .779999320
02 .829999272
02 .879999225
02 .929999177
02 .979999129

O 00 0000000000000 00 00

399999921
.899999742
1399000980
.189999883
239999835
.289999787
.339999740
.389999692
439999644
.489999596 e
.539999549 e
589990501 e
639999453 e
689999406
(50 DDP55R
.789999310
.839999263
.889999215
939999167
.989999120

® 00000000

® 000000

fix

SR BN Ey e e ey

.105'00000'e'3'-'n';'ntest"

88

s4'
ghy!

s6'!

EXERCISE 17(B)

Note error between 0 and 100."

nli+lll;lnll

crtn'i~"1 ' erin!t

e

o0 00000000000

e
€
e

0';'n"

erlblalertntl

Oiflointnflot 1709'print'nflo"

100'i-'n'; 'ntest" trn's6"

if'crtn'zero's4'pos's5"

stop™

Output

.000000004 e 00 .999999945 e 00 .199999992 e 01 .300000016 e 01
.500000004 e 01 .600000028 e 01 .699999992 e 01 .800000016 e 01
999999945 ‘e 01 .110000018 e 02 .120000009 e 02 129999998
1149999980 e 02 .160000030 e 02 ,170000021 e 02 .180000011
:1999999092 ‘e 02 .209999983 e 02 .219999973e 02 .230000023
.250000004 e 02 .259999995 e 02 .269999985 e 02 .279999976
.300000016 e 02 .310000007 e 02 .319999997 e 02 .329999987
.350000028 e 02 .360000018 e 02 .370000009 e 02 <379990U80
399999980 e 02 .410000030 e 02 .420000021 e 02 .430000011
.449999992 e 02 .459999983 e 02 .469999973 e 02 .480000023
500000004 e 02 .509999995 e 02 .519999985 e 02 .529999976
.550000016 e 02 .560000007 e 02 .569999997 e 02 579999987
600000028 e 02 .610000018 e 02 .620000009 e 02 .629999999
649999980 e 02 .659999971 e 02 .670000021 e 02 .680000011
1699999992 (e 02 .709999983 e 02 « 1199999735 e (O7 .730000023
.750000004 e 02 t 1599999051802 .769999985 e 02 .779999976
.800000016 e 02 .810000007 e 02 .819999997 e 02 .829999987
.850000028 e 02 .860000018 e 02 .870000009 e 02 :879999999
899999980 e 02 .910000030 e 02 .920000021 e 02 .930000011
1949999992 e 02 .959999983 e 02 .970000033 e 02 .980000023

2999999945 e 02

sl!

A

s3'

s4'

Scalar Product'
dirntal 5l b LT
iread'n"

read'a'j"

(09 g

read!b'
glzlsplatjtt
spiflabiialibljitlis ol

iflpreviisininegtsdl

EXERCISE 18

index!'j"
Ol:ljll
jli+l1l:|jll
jli+l1l:1jll
jli+lll:ljll

1608'print'sp"

e

.399999980
.899999980
.139999990
.190000002
.240000014
.290000026
3390909978
.389999990
.440000002
.490000014
.540000026
.589999978
-639999500
.690000002
.740000014
.79G6000026
830099078
.889999990
.940000002
.990000014

if'prev'i-'n'neg's2"

if'prev'i-'n'neg's3"

use'slm

s3!

a1

s2'

s4'
s5'

s6!
s

s8'
s9!'

s10'

EXERCISE 19

The coefficient prod, i, is the sum of products pl, j x p2, i - j,
where j runs between the greater of i - n2 and 0, and the lesser of i and
nl. (For statement used.)'

dim'polyl'64'poly2'64'prod'128"
rdxit's2'"

ol;’il;vj"'
read'polyl'i"
for'i'step'l'until'63'rpeat'sl"

stop'use's3"

index'i'j'i-j"

To read in the coefficients of
poly2.!

Initialize indexes'

Read coefficient!

Too many coefficients'

pli=tltn 1 on i was incremented before discovery that
there is not another coefficient'

rdxit's6"

read'poly2'j" for'j'step'l'until'63'rpeat's5"
stop'use's3"™ Too many coefficients'

kSt in 2 previitinlttlimet Ot
0';'sum™ s Uy gl

if'j'pos's8" Q)L U

i Uhtaa gl afitpreviicinliineglsgt p it pey i
sl =gt sum'+'polyl'j'x'poly2'i-j';'sum"

for’j 'Stepll 'until'lim j'rpeatls()ll
for'i'step'l 'until'lim i'rpeat's7'"
cr'1608'print'prod'i"

erlecritusec!s3 "™

sumiiiprod it
Ol;li"

for'i'step'l'until'lim i'rpeat's10"

89

90

83!

g2’

s4'

EXERCISE 20

("For" statement used) '

dizn 'J 150 index'n?’

iread'n" Ok AR BLE oL

medd T At pead it read'y!

cx'2308 'printly!t cr'300'iprt'['n'i+'1']" 2008'print'J* oLl
cr!300Y priints 2008'print'J'n" nli=ttainls
0'flo'['2'nx'n'i+'2 ']'/’y'x'J'n' TU=8 Tt 2 heTn S cr'3004priint
2008'print'J'n"™ for'n'step'-1'until'O'rpeat's2"

rdxit's4"™ uselssl

stop™

EXERCISE 21

Matrix - Vector Product

n = number of rows in the vector and columns in the matrix, m = number of
rows in the matrix'

51"

gLt
g3!

s4'

s5!

s6!

s7!'

s8'

s9!

iread'n" iread'm" dim 'vetr! L0Imerctl ol
index'k"™ dbind'ij" m'; 'mtrx'on
I glon Ol ks

b Rt G if'k'i-![!ntit'1"|lzerols2
read'vetr'k™ mEe sl

e e

if'ij'1'i-'['n'i+'1']'zero's4" read'mtrx'ij"
1 ST uselsgil
if'ij'0'i-'m'zero's5" ij'0'i+'17;1j'0" use's2™
LAl oD

0';'sum™" R LA R
mitrxlijixivetoiichhlsumi: isupats JetiHt Uete
iflkti-t[mti+11 " ['zezols 8 oty L Bl)R LRSS s oyt e
cr'1608'print'sum" if'ij'0'i-'m'zero's9™

1jilob = Bt jos use's6"

stop™

s3!
s4'

sl10!'
sll!

sl!

82!

83!
s4'

s5"

s6!
il

s8'

EXERCISE 22

iread'msize"
if'225'i-'msize'neg's10"
dbind'ij"™

Byt

read'mtrx'ij"

iread'rows !’

rows';'mtrx'0"

iread'colms™"

dim'mtrx'226 ™"

ll;lijloll

for'ij'l'step'l 'until'colms'rpeat's4"

for'ij'0'step'l 'until'rows'rpeat's3"

computation -----

Cr'daprt'uCZIM'lcl'a't'r'i'x' Itlol ll lalrlgle"

StOp m

EXERCISE 23

Matrix Product'

iread'm"

iread'n"

iread'k"

dim'mtrxa'401 'mtrxb'401"
n''mtrza 0%

11;tjr0n

1150501

read'mtrxa'ij"
for'ij'0'step'l'until'm'rpeat'sl"
Ity

read'mtrxb'jk"
for'jk'0'step'l'until'n'rpeat's3"
1 Ug A

gl Up Gt ateplt
mtrxa'ij'x'mtrxb'jk'+'sum';'sum"”
forlijiiiete plIiuntilin!rpeat!ls7!"
trn's8"

1608'print'sum "

for'ij'0'step'l'until'm'rpeat's5"

rows in A'

columns in A and rows in B!
columns in B!

dbind'ij'jk"

k's'mtrxb!ON

for'ijll tsteptlluntilintrpeatis 2t

ll;ljkloll‘

for'jk'l'step'l 'until'k'rpeat's4"
l l; lij Ioll'

Crloli_l'?’;lcrtn"'

0';'sum™"

jklo'i+ll!;|jk|0||
(eheolig LA g

el {0 ey 7y

for'jk'l'step'l 'until'k'rpeat's6 ™

stop""’

9l

92

g2l

s2'

g3

gl

s2'

B!
s4'

sl!

s2'
B3
s4!

S5

s10'
sl2!
s20'

EXERCISE 24
Binomial Coefficients'
dim'coef'64" index'm" iread'nu™
previi=T11: iyt Olsdn=11 .9999'99999'e'0';'coef'0O"
Ol;ltempll;lmll
templ';'temp2 " coeflmGitempiit previt!tempZilcaefinitl

for'm'step!luntilin-1!rpeatis2!

999399999 tel 0litcoeflim! m is now n-1 + 1 remark!'
forln=1'step!l'until!limit!rpedt! ST Q U rn il
cr'3000'iprt'['0'unflo’'coef'm']" for'm'step'l 'until'nu'rpeat's3™

EXERCISE 25

Factorial n'

rdxit's4"

iread'n" trnle3 !
ifinh=llinepls3ilzeraol=SUNN00G0100990 0 faicinll 1S il
factn'x'0'flo'k'; 'factn" for'k'step'l 'until'n'rpeat's2"
cr'2008'print'factn" ugetsl

crldaprt!icolorucZ!I!MIP'R QP BIREINIcllcolost

stop'use'sl™
EXERCISE 26

compute wiliSand y==c= ===

if'y'neg's3'pos's2" ret's20'use'sl2"
compute N(u) x N(w) ------- use'sl °
set's4'to's5"

ret's20'use's1Q"

go to's0"
compute Z(u) x N(w)-------- use'sl"
compute Z(w) x N(u)-------- use'sl"

Z of u and w computed and stored
N of u and w computed and stored

go to's0O"

EXERCISE 27

Each set of data is preceded by an integer for the iread j value,

thereby indicating the statement to be used. In the first case 1 is iread
and control goes to s10, second case, 2, and control goes to s30 and so on.
In the fifth case where s20 is reused j is set again equal to 3. If j is set

equal

s100'

s10!'

s30'

s40'

545!
s101'

s2!
A5
il
s4'

g5

s6'

to 5 control is transferred to s101 and the program stops.'
index!'j" use'sl0]l'use's40'use's20'use's30'use's10"
1readiylt use'sl00'j"

read data, compute,
print=c==-= use'sl00"

prints===—= usels 00N

If a variable amount of data is necessary in any of these subsections
a rdxit may be set, as in

rdxit's45"

read data - data will be read in until a blankword is read, control
is then transferred to s45.

cormpuiersprint==== usesiioo!

stop™
EXERCISE 28

limn: number of words in name code, limd: number of words in date
code, run: run number, spl: space on first line, sp2: space on
second line'

iread'limn'iread'limd" iread'run'iread'spl" iread'sp2"
dim'name'5'date'6" index'j" 1Y 'page"
aread'name'j" for'j!step!luntil litan!rpeatls 1 UL
aread'date" for'j'step'l 'until'limd'rpeat's2" use's3"

page'it+'l';'page"

LU

apri'name'j {l) for'j'step'l 'until'limn'rpeat's4"

spl'reprt' " TR

aprt'date'j" for'j'step'l 'until'limd'rpeat's5"
1000'iprt'run" sp2'reprt'" daprt'p'."

1000'iprt'page" 64';'crtn"
Computation, and after cr' for blank line,

i (L 1 n
crtn'i-'4';'crtn” if'crtn'zero's33'pos's6

95

94

At end of computation,

sT!' if'64'i-'crtn'zero's9" 4'reprt'cr4"
exim'isidl; leptnll use's7!
s9! zuniiR 1 ot 0';'page" use's33"

Name and date data to print, John Doe 4-July-62 Run No. +3'+6'+1'+71'+68'

uc Jlc o hnspuc Dlcoe 4 -uc Jlculy - 6 2cruc Rlc u nspuc Nlc o .sp
10640846'62320610'2 f 08464£'240a1064'08520j12'0a341420'101 £ 0852'32061032'08462206"

ON

My

